Advertisement

Multimedia Tools and Applications

, Volume 75, Issue 2, pp 1223–1241 | Cite as

2D Barcodes for visual cryptography

  • Guangyu Wang
  • Feng Liu
  • Wei Qi YanEmail author
Article

Abstract

The basic idea of Visual Cryptography (VC) is to divide a secret image into several partitions which are called VC shares. With various categories of VC schemes having been developed to enhance the maturity of VC since its emergence, one of obsessions in current investigations of VC is that each VC share lacks authentication. In this paper, we analyze VC authentication methods using 2D barcodes and embed binary codes into VC shares for authentication purpose. The objective of this paper is to present a method of improving the authentication of traditional VC scheme. Our contribution of this paper is to propose a scheme of embedding 2D barcodes into given VC shares to prevent cheating, we search the best region of a given share where the 2D barcode could be embedded into so as to keep the visual quality of the revealed secret.

Keywords

2D barcode Visual cryptography Authentication 

References

  1. 1.
    Ateniese G, Blundo C, Santis AD, Stinson DR (2001) Extended capabilities for visual cryptography. Theor Comput Sci 250:143–161CrossRefzbMATHGoogle Scholar
  2. 2.
    Campbell A (2000) The designer’s lexicon. Chronicle Books, San FranciscoGoogle Scholar
  3. 3.
    Chen Y-F, Chan Y-K, Huang C-C, Tsai M-H, Chu Y-P (2007) A multiple-level visual secret-sharing scheme without image size expansion. Inf Sci 177:4696–4710CrossRefMathSciNetzbMATHGoogle Scholar
  4. 4.
    Chen, S.-Q. A Corner Matching Algorithm Based on Harris Operator. In: Information Engineering and Computer Science (ICIECS), 2010 2nd International Conference on, pp. 1–2 (2010)Google Scholar
  5. 5.
    Chen Y-C, Tsai D-S, Horng G (2012) Comment on “cheating prevention in visual cryptography”. IEEE Trans Image Process 21:3319–3323CrossRefMathSciNetGoogle Scholar
  6. 6.
    Chen Y-C, Tsai D-S, Horng G (2012) A new authentication based cheating prevention scheme in Naor–Shamir’s visual cryptography. J Vis Commun Image Represent 23:1225–1233CrossRefGoogle Scholar
  7. 7.
    Dobbertin H (1998) Cryptanalysis of MD4. J Cryptol 11:253–271CrossRefzbMATHGoogle Scholar
  8. 8.
    Denso ADC:QR code Essentials (2011)Google Scholar
  9. 9.
    Gao, M., Sun, B. Blind Watermark Algorithm Based on QR Barcode. In: Wang, Y., Li, T. (eds.) Foundations of Intelligent Systems, vol. 122, pp. 457–462 (2012)Google Scholar
  10. 10.
    Guo T, Liu F, Wu CK (2013) Threshold visual secret sharing by random grids with improved contrast. J Syst Softw 86(8):2094–2109CrossRefGoogle Scholar
  11. 11.
    Hahn, H., Jung, J. Improving performance of the decoder for two-dimensional barcode symbology PDF417. In: Braz, J., AraÚJo, H., Vieira, A., EncarnaÇÃO, B. (eds.) Information in Control, Automation and Robotics I, pp. 233–237 (2006)Google Scholar
  12. 12.
    Hegde, C., Manu, S., Shenoy, P., Venugopal, K., Patnaik, L. Secure authentication using image processing and Visual Cryptography for banking applications. In: 16th International Conference on Advanced Computing and Communications, pp. 65–72 (2008)Google Scholar
  13. 13.
    Horng G, Chen T, Tsai D-S (2006) Cheating in visual cryptography. Des Codes Crypt 38:219–236CrossRefMathSciNetzbMATHGoogle Scholar
  14. 14.
    Hou Y-C (2003) Visual cryptography for color images. Pattern Recogn 36:1619–1629CrossRefGoogle Scholar
  15. 15.
    Hu CM, Tzeng WG (2007) Cheating prevention in visual cryptography. IEEE Trans Image Process 16(1):36–45CrossRefMathSciNetzbMATHGoogle Scholar
  16. 16.
    International Organization for Standardization ISO/IEC 16022–2000: Information technology international symbology specification-Data matrix. Switz Joint Tech Comm ISO/IEC JTC 1:67–87 (2004)Google Scholar
  17. 17.
    Jiang, F., Liu, Z., Feng, X. Research of Encodation Schemes Selecting Optimization for Character 2D Barcode. In: Yang, Y., Ma, M. (eds.) Proceedings of the 2nd International Conference on Green Communications and Networks 2012 (GCN 2012): Volume 1, vol. 223, pp. 615–623. Springer Berlin Heidelberg (2013)Google Scholar
  18. 18.
    Kuo, D., Wong, D., Gao, J., Chang, L. A 2D Barcode Validation System for Mobile Commerce. In: Bellavista, P., Chang, R.-S., Chao, H.-C., Lin, S.-F., Sloot, P.A. (eds.) Advances in Grid and Pervasive Computing, vol. 6104, pp. 150–161 (2010)Google Scholar
  19. 19.
    Lau, D.L., Arce, G.R.: Modern digital halftoning. CRC Press (2011)Google Scholar
  20. 20.
    Lee Y-S, Chen T-H (2012) Insight into collusion attacks in random-grid-based visual secret sharing. Signal Process 92:727–736CrossRefGoogle Scholar
  21. 21.
    Liu F, Wu CK, Lin XJ (2008) Color visual cryptography schemes. Inf Secur, IET 2:151–165CrossRefMathSciNetGoogle Scholar
  22. 22.
    Liu F, Wu CK, Lin XJ (2010) Some extensions on threshold visual cryptography schemes. Comput J 53(1):107–119CrossRefGoogle Scholar
  23. 23.
    Liu F, Wu C, Lin X (2011) Cheating immune visual cryptography scheme. IET Inf Secur 5:51–59CrossRefGoogle Scholar
  24. 24.
    Memon N, Wong PW (1998) Protecting digital media content. Commun ACM 41:35–43CrossRefGoogle Scholar
  25. 25.
    Metz C (1999) AAA protocols: authentication, authorization, and accounting for the internet. IEEE Internet Comput 3:75–79CrossRefGoogle Scholar
  26. 26.
    Myodo, E., Sakazawa, S., Takishima, Y.: Visual cryptography based on void-and-cluster halftoning technique. In: Image Processing, 2006 I.E. International Conference on, pp. 97–100. IEEE (2006)Google Scholar
  27. 27.
    Myodo, E., Takagi, K., Miyaji, S., Takishima, Y.: Halftone visual cryptography embedding a natural grayscale image based on error diffusion technique. In: Multimedia and Expo, 2007 I.E. International Conference on, pp. 2114–2117. IEEE (2007)Google Scholar
  28. 28.
    Nakajima, M., Yamaguchi, Y.: Extended Visual Cryptography for Natural Images. In: WSCG, pp. 303–310 (2002)Google Scholar
  29. 29.
    Naor, M., Pinkas, B. Visual Authentication and Identification. In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 322–336 (1997)Google Scholar
  30. 30.
    Naor, M., Shamir, A.: Visual cryptography. In: Advances in Cryptology – EUROCRYPT’ 94, pp. 1–12. Springer (1995)Google Scholar
  31. 31.
    Revenkar PS, Anjum A, Gandhare WZ (2010) Survey of VC schemes. Int J Secur Appl 4:49–56Google Scholar
  32. 32.
    B. V. Rompay, “Analysis and Design of Cryptographic Hash functions, MAC algorithms and Block Ciphers”, Ph.D. thesis, Katholieke Universiteit, Leuven, Belgium (2004)Google Scholar
  33. 33.
    Rouillard, J.: Contextual QR codes. In: ICCGI 2008. The Third International Multi- Conference on Computing in the Global Information Technology, July 27-August 1, pp. 50–55 (2008)Google Scholar
  34. 34.
    Shyu SJ, Huang S-Y, Lee Y-K, Wang R-Z, Chen K (2007) Sharing multiple secrets in VC. Pattern Recogn 40:3633–3651CrossRefzbMATHGoogle Scholar
  35. 35.
    Sobti R, Geetha G (2012) Cryptographic hash functions: a review. IJCSI Int J Comput Sci Issues 9:461–479Google Scholar
  36. 36.
    Solms, S.H., Solms, R.: Information Technology Governance. Information Security Governance, pp. 1–7. Springer (2009)Google Scholar
  37. 37.
    Stoleru D (2005) Extended visual cryptography schemes. Dr Dobb’s J 30:36–39Google Scholar
  38. 38.
    Touch JD (1995) Performance analysis of MD5. SIGCOMM Computing Commun Rev 25:77–86CrossRefGoogle Scholar
  39. 39.
    Tuyls, P., Hollmann, H. D. L., Lint, J. H. V., Tolhuizen, L.: XOR-based VC schemes. Designs, Codes and Cryptography 37, 169–186 (2005) 19 Veltkamp, R. C.: Shape matching: similarity measures and algorithms. Paper presented at the Shape Modeling and Applications, SMI 2001 International Conference on (2001).Google Scholar
  40. 40.
    Vincent E, Laganière R (2005) Detecting and matching feature points. J Vis Commun Image Represent 16:38–54CrossRefGoogle Scholar
  41. 41.
    Wang G (2014) Content based authentication of visual cryptography. Master Thesis. Auckland University of Technology, New ZealandGoogle Scholar
  42. 42.
    Wang, Z., Arce, G.R.: Halftone visual cryptography through error diffusion. In: Image Processing, 2006 I.E. International Conference on, pp. 109–112. IEEE (2006)Google Scholar
  43. 43.
    Wei-Qi Yan, Duo Jin, Kankanhalli, M.S. Visual cryptography for print and scan applications, Proceedings of the IEEE ISCAS’04, pp.572 - 575 (2004)Google Scholar
  44. 44.
    Weir J, Yan W-Q (2009) Dot-size variant VC. In: Ho ATS, Shi YQ, Kim HJ, Barni M (eds) IWDW 2009. LNCS, vol 5703. Springer, Heidelberg, pp 136–148Google Scholar
  45. 45.
    Weir, J., Yan, W.: A Comprehensive Study of VC. In: Shi, Y. (ed.) Transactions on Data Hiding and Multimedia Security V, vol. 6010, pp. 70–105. Springer Berlin Heidelberg (2010)Google Scholar
  46. 46.
    Weir, J., Yan, W.: Authenticating VC Shares Using 2D Barcodes. In: Shi, Y., Kim, H.-J., Perez-Gonzalez, F. (eds.) Digital Forensics and Watermarking, vol. 7128, pp. 196–210. Springer Berlin Heidelberg (2012)Google Scholar
  47. 47.
    Weir, J., Yan, W.-Q: Sharing multiple secrets using VC. In: Circuits and Systems, 2009. ISCAS 2009. IEEE International Symposium on, pp. 509–512 (2009)Google Scholar
  48. 48.
    Yan, Y., Li, Q., Cao, M., Chen, H., Xue, J.: Application Research of Two-Dimensional Barcode in Information Construction of Colleges. In: Lu, W., Cai, G., Liu, W., Xing, W. (eds.) Proceedings of the 2012 International Conference on Information Technology and Software Engineering, vol. 212, pp. 71–80. Springer Berlin Heidelberg (2013)Google Scholar
  49. 49.
    Yang C-N, Chen T-S, Ching M-H (2006) Embed additional private information into two-dimensional bar codes by the visual secret sharing scheme. Integr Computer-Aided Eng 13:189–199Google Scholar
  50. 50.
    Yang, C., Laih, C.: Some new types of visual secret sharing schemes. In: National Computer Symposium (NCS 1999), vol. III, pp. 260–268 (1999)Google Scholar
  51. 51.
    Zhang, C., Ma, L., Mao, D.: A 2D Barcode Recognition System Based on Image Processing. In: Zhu, M. (ed.) Electrical Engineering and Control, vol. 98, pp. 683–688. Springer Berlin Heidelberg (2011)Google Scholar
  52. 52.
    Zhou, Z., Arce, G.R., Di Crescenzo, G.: Halftone visual cryptography. In: ICIP 2003. International Conference on, pp. I-521-524 vol. 521 (2003)Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.School of Computer and Mathematical SciencesAuckland University of TechnologyCBD AucklandNew Zealand
  2. 2.State Key Laboratory of Information Security, Institute of Information EngineeringChinese Academy of SciencesBeijingChina

Personalised recommendations