Multimedia Tools and Applications

, Volume 74, Issue 19, pp 8655–8667 | Cite as

Tactile-force brain-computer interface paradigm

Somatosensory multimedia neurotechnology application
  • Shota Kono
  • Tomasz M. Rutkowski


This study explores the extent to which a neurotechnology multimedia application utilizing tactile-force stimulus delivered to the hand holding a force-feedback joystick can serve as a platform for a brain-computer interface (BCI). We present a successful application of an extended multimedia paradigm beyond the classic vision and auditory based approaches. The four pressure directions are used to evoke tactile brain potential responses, thus defining a tactile-force brain computer interface (tfBCI). We present brainwave electroencephalogram (EEG) signal processing and classification procedures leading to successful online interfacing results. Experiment results with seven advanced and five naive users performing online BCI experiments provide a validation of the hand location tfBCI paradigm, while the feasibility of the concept is substantiated by noteworthy information-transfer rates.


Tactile media interface Brain-computer interface Brain somatosensory evoked response Brainwave signal processing and classification 



This research was supported in part by the Strategic Information and Communications R&D Promotion Program, no. 121803027, of The Ministry of Internal Affairs and Communications in Japan.

Author Contributions

Programmed the tactile-force stimulus generation and delivery interface: SK, TMR. Performed the EEG experiments: SK. Analyzed the data: SK, TMR. Conceived the concept of the tactile-force BCI: TMR. Wrote the paper: TMR, SK.


  1. 1.
    Brouwer AM, Van Erp JBF (2010) A tactile P300 brain-computer interface. Front Neurosci 4 (19). doi: 10.3389/fnins.2010.00019.
  2. 2.
    Max 6 (2012).
  3. 3.
    Jurcak V, Tsuzuki D, Dan I (2007) 10/20, 10/10, and 10/5 systems revisited: Their validity as relative head-surface-based positioning systems. NeuroImage 34(4):1600–1611. doi: 10.1016/j.neuroimage.2006.09.024. CrossRefGoogle Scholar
  4. 4.
    Kaufmann T, Holz EM, Kuebler A (2013) Comparison of tactile, auditory and visual modality for brain-computer interface use: A case study with a patient in the locked-in state. Front Neurosci 7:129. doi: 10.3389/fnins.2013.00129. CrossRefzbMATHGoogle Scholar
  5. 5.
    Kono S (2014) Tactile-force brain-computer interface paradigm. Bachelor degree thesis, School of Informatics -University of Tsukuba, TsukubaGoogle Scholar
  6. 6.
    Kono S, Aminaka D, Makino S, Rutkowski TM (2013) EEG signal processing and classification for the novel tactile-force brain-computer interface paradigm. In: International conference on Signal-Image Technology Internet-Based Systems (SITIS) 2013, pp 812–817. doi: 10.1109/SITIS.2013.132, arXiv:1310.1593
  7. 7.
    Krusienski DJ, Sellers EW, Cabestaing F, Bayoudh S, McFarland DJ, Vaughan TM, Wolpaw JR (2006) A comparison of classification techniques for the P300 speller. J Neural Eng 3(4):299. CrossRefGoogle Scholar
  8. 8.
    Mori H, Matsumoto Y, Kryssanov V, Cooper E, Ogawa H, Makino S, Struzik ZR, Rutkowski TM (2013) Multi-command tactile brain computer interface: a feasibility study. In: Oakley I, Brewster S (eds) Haptic and Audio Interaction Design 2013 (HAID 2013), Lecture Notes in Computer Science, vol 7989. Springer-Verlag, Berlin Heidelberg, pp 50–59. arXiv:1305.4319 Google Scholar
  9. 9.
    Mori H, Matsumoto Y, Struzik ZR, Mori K, Makino S, Mandic D, Rutkowski TM (2013) Multi-command tactile and auditory brain computer interface based on head position stimulation. In: Proceedings of the Fifth International Brain-Computer Interface Meeting 2013, p. Article ID: 095. Graz University of Technology House, Publishing, Asilomar Conference Center, Pacific Grove. doi: 10.3217/978-4-83452-381-5/095,
  10. 10.
    Müller-Putz G, Scherer R, Neuper C, Pfurtscheller G (2006) Steady-state somatosensory evoked potentials: suitable brain signals for brain-computer interfaces?. IEEE Trans Neural Syst Rehab Eng 14(1):30–37. doi: 10.1109/TNSRE.2005.863842 CrossRefGoogle Scholar
  11. 11.
    Plum F, Posner JB (1966) The diagnosis of stupor and coma. FA Davis, PhiladelphiaGoogle Scholar
  12. 12.
    Rutkowski TM, Cichocki A, Mandic DP (2009) Spatial auditory paradigms for brain computer/machine interfacing. In: Proceedings of the international workshop on the principles and applications of spatial hearing 2009 (IWPASH 2009). Miyagi-Zao Royal Hotel, Sendai, p 5Google Scholar
  13. 13.
    Rutkowski TM, Mori H (2014) Tactile and bone–conduction auditory brain computer interface for vision and hearing impaired users. J Neurosci Methods. doi: 10.1016/j.jneumeth.2014.04.010
  14. 14.
    Schalk G, Mellinger J (2010) A practical guide to brain–computer interfacing with BCI2000. Springer-Verlag, London LimitedCrossRefGoogle Scholar
  15. 15.
    van der Waal M, Severens M, Geuze J, Desain P (2012) Introducing the tactile speller: an ERP-based brain–computer interface for communication. J Neural Eng 9(4):045,002. doi: 10.1088/1741-2560/9/4/045002, CrossRefzbMATHGoogle Scholar
  16. 16.
    Wischenbart M (2010) ForceFeedback joystick driver for Java.
  17. 17.
    Wolpaw J, Wolpaw EW (2012) Brain-computer interfaces: principles and practice. Oxford University PressGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Life Science Center of TARAUniversity of TsukubaTsukuba-shiJapan
  2. 2.RIKEN Brain Science InstituteWako-shiJapan

Personalised recommendations