Multimedia Tools and Applications

, Volume 75, Issue 20, pp 12941–12954 | Cite as

Online distribution and interaction of video data in social multimedia network

  • Xiangyang Ji
  • Qifei Wang
  • Bo-Wei Chen
  • Seungmin Rho
  • C. C. Jay Kuo
  • Qionghai Dai
Article

Abstract

As the emerging multimedia on the latest social multimedia network, high dimensional video (HDV) data distribution is one of the most challenging problems in social multimedia applications. In the paper, we provide a state-of-the-art analysis on the streaming and interactive technologies for the two most popular representations of HDV, video plus depth map and multi-view video since both of them can enable the view-point interaction and behavior analysis in social media applications. Additionally, view-point switching techniques in HDV streaming with emphasis on interactive functionality are discussed, including SP-frame, Wyner-ziv frame and view switchable stream generation. Moreover, the overall performance of key tools focusing on HDV streaming is evaluated and potential improvements are discussed.

Keywords

High dimensional Video streaming Social media network Interaction 

References

  1. 1.
    Adelson E, Bergen J (1991) The plenoptic function and the elements of early vision. In: Landy M, Movshon JA (eds) Computation models of visual processing. MIT Press, Cambridge, pp 3–20Google Scholar
  2. 2.
    Akar G-B, Tekalp A-M, Fehn C, Civanlar M-R (2007) Transport methods in 3DTV—a survey. IEEE Trans Circuits Syst Video Technol 17(11):1622–1630CrossRefGoogle Scholar
  3. 3.
    Bjøntegaard G (2008) Improvements of the BD-PSNR model. ITU-T SG16/Q6, 35th VCEG Meeting, Doc.VCEG-AI11Google Scholar
  4. 4.
    Chen Y, Wang Y-K, Ugur K, Hannuksela M, Lainema J, Gabbouj M (2009) The emerging MVC standard for 3D video services. EURASIP J Adv Signal Process 2009:1 article ID 786015Google Scholar
  5. 5.
    Cheung N, Ortega A (2007) Distributed source coding application to low-delay free viewpoint switching in multi-view video compression. In: Proc. Picture Coding Symp. (PCS’07)Google Scholar
  6. 6.
    Cheung G, Ortega A, Cheung N-M (2011) Interactive streaming of stored multiview video using redundant frame structures. IEEE Trans Image Process 20(3):744–761MathSciNetCrossRefGoogle Scholar
  7. 7.
    Guo X, Lu Y, Gao W, Huang Q (2005) Viewpoint switching in multiview video streaming. In: Proc. IEEE Int. Symp. on Circuits and Syst. (ISCAS’05). p 3471–3474Google Scholar
  8. 8.
    Guo X, Lu Y, Wu F, Gao W, Huang Q (2006) Viewpoint switching in multiview video streaming. In: Proc. Vis. Commun. Imag. Process. (VCIP’06). p 298–305Google Scholar
  9. 9.
    Gurler CG, Tekalp M (2013) Peer-to-peer system design for adaptive 3D video streaming. IEEE Commun Mag 51(5):108–1114CrossRefGoogle Scholar
  10. 10.
    Hewage CTER, Martini MG (2013) Quality of experience for 3D video streaming. IEEE Commun Mag 51(5):101–107CrossRefGoogle Scholar
  11. 11.
    Kurutepe E, Civanlar M-R, Tekalp A-M (2007) Client-driven selective streaming of multiview video for interactive 3DTV. IEEE Trans Circuits Syst Video Technol 17(11):1558–1565CrossRefGoogle Scholar
  12. 12.
    Levoy M and Hanrahan P (1996) Light field rendering. In: Proc. ACM SIGGRAPH. p 31–42Google Scholar
  13. 13.
    Liu Y, Huang Q, Ma S, Zhao D, Gao W (2009) Joint video/depth rate allocation for 3D video coding base on view synthesis distortion model. Signal Process Image Commun 24(1–2):666–681CrossRefGoogle Scholar
  14. 14.
    Merkle P, Smolic A, Müller K, Wiegand T (2007) Efficient prediction structures for multi-view video coding. IEEE Trans Circuits Syst Video Technol 17(11):1641–1673CrossRefGoogle Scholar
  15. 15.
    Shimizu S, Kitahara M, Kimata H, Kamikura K, Yashima Y (2007) View scalable multiview video coding using 3D warping with depth map. IEEE Trans Circuits Syst Video Technol 17(11):1485–1495CrossRefGoogle Scholar
  16. 16.
    Shum H, Chan S-C, Kang S-B (2008) Image-based rendering. SpringerGoogle Scholar
  17. 17.
    Wang Q, Ji X, Dai Q, Zhang N (2012) Free viewpoint video coding with rate-distortion analysis. IEEE Trans Circuits Syst Video Technol 22(6):875–889CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Xiangyang Ji
    • 1
  • Qifei Wang
    • 2
  • Bo-Wei Chen
    • 3
  • Seungmin Rho
    • 4
  • C. C. Jay Kuo
    • 5
  • Qionghai Dai
    • 6
  1. 1.Tsinghua UniversityBeijingChina
  2. 2.Department of Electrical Engineering and Computer SciencesUniversity of CaliforniaBerkeleyUSA
  3. 3.Princeton UniversityPrincetonUSA
  4. 4.Sungkyul UniversityAnyangSouth Korea
  5. 5.University of Southern CaliforniaLos AngelesUSA
  6. 6.Department of Automation, Tsinghua UniversityBeijingChina

Personalised recommendations