Multimedia Tools and Applications

, Volume 74, Issue 24, pp 11569–11594 | Cite as

Approximating adaptive distance measures using scalable feature signatures

Article

Abstract

The feature signatures in connection with the adaptive distance measures have become a respected similarity model for effective multimedia retrieval. However, the efficiency of the model is still a challenging task because the adaptive distance measures have at least quadratic time complexity according to the number of tuples in feature signatures. In order to reduce the number of tuples in feature signatures, we introduce the scalable feature signatures, a new formal framework enabling definition of new methods based on agglomerative hierarchical clustering. We show the framework can be used to express nontrivial feature signature reduction techniques including also popular agglomerative hierarchical clustering techniques. We experimentally demonstrate our new feature signature reduction techniques can be used to implement order of magnitude faster yet effective filter distances approximating the original adaptive distance measures. We also show the filter distances using our new feature signature reduction techniques can compete or even outperform the filter distances based on the related feature signature reduction techniques.

Keywords

Similarity search Approximate search Content-based retrieval Adaptive distance measures Scalable descriptor Agglomerative hierarchical clustering 

References

  1. 1.
    Achanta R, Shaji A, Smith K, Lucchi A, Fua P, Süsstrunk S (2012) Slic superpixels compared to state-of-the-art superpixel methods. IEEE Trans Pattern Anal Mach Intell 34 (11):2274–2282CrossRefGoogle Scholar
  2. 2.
    Assent I, Wichterich M, Meisen T, Seidl T (2008) Efficient similarity search using the earth mover’s distance for large multimedia databases. In: Proceedings of IEEE ICDE, pp 307–316Google Scholar
  3. 3.
    Beecks C, Kirchhoff S, Seidl T (2013) Signature matching distance for content-based image retrieval. In: Proceedings of ACM international conference on multimedia retrieval (ICMR 2013), Dallas, Texas, USA. ACM, New York, pp 41–48Google Scholar
  4. 4.
    Beecks C, Uysal MS, Seidl T (2010) Efficient k-nearest neighbor queries with the signature quadratic form distance. In: Proceedings of 4th international workshop on ranking in databases (DBRank 2010) in conjunction with IEEE 26th international conference on data engineering (ICDE 2010), Long Beach, California, USA. IEEE, Washington, pp 10–15Google Scholar
  5. 5.
    Beecks C, Uysal MS, Seidl T (2010) Signature quadratic form distance. In: Proceedings of ACM CIVR, pp 438–445Google Scholar
  6. 6.
    Beecks C, Uysal MS, Seidl T (2011) L2-signature quadratic form distance for efficient query processing in very large multimedia databases. In: Proceedings of 17th international conference on multimedia modeling (MMM 2011), Taipei, LNCS, vol 6523. Springer, Berlin, pp 381–391Google Scholar
  7. 7.
    Bosch A, Zisserman A, Munoz X (2007) Representing shape with a spatial pyramid kernel. In: Proceedings of the 6th ACM international conference on image and video retrieval, CIVR ’07. ACM, New York, pp 401–408Google Scholar
  8. 8.
    Budikova P, Batko M, Zezula P (2011) Evaluation platform for content-based image retrieval systems. In: Proceedings of the 15th international conference on theory and practice of digital libraries: research and advanced technology for digital libraries, TPDL’11. Springer-Verlag, Berlin Heidelberg, pp 130–142Google Scholar
  9. 9.
    Chang S-F, Sikora T, Purl A (2001) Overview of the mpeg-7 standard. IEEE Trans Circ Syst Video Technol 11 (6):688–695CrossRefGoogle Scholar
  10. 10.
    Chatzichristofis S, Boutalis Y, Lux M (2009) Selection of the proper compact composite descriptor for improving content based image retrieval. In: Proceedings of the 6th IASTED international conference, vol 134643, p 064Google Scholar
  11. 11.
    Chatzichristofis SA, Boutalis YS (2008) Cedd: C6olor and edge directivity descriptor: a compact descriptor for image indexing and retrieval. In: Proceedings of the 6th international conference on computer vision systems, ICVS’08. Springer-Verlag, Berlin Heidelberg, pp 312–322Google Scholar
  12. 12.
    Chatzichristofis SA, Boutalis YS (2008) Fcth: Fuzzy color and texture histogram - a low level feature for accurate image retrieval. In: Proceedings of the 2008 9th international workshop on image analysis for multimedia interactive services, WIAMIS’08. IEEE Computer Society, Washington, pp 191–196Google Scholar
  13. 13.
    Datta R, Joshi D, Li J, Wang JZ (2008) Image retrieval: ideas, influences, and trends of the new age. ACM Comput Surv 40 (2):5:1–5:60CrossRefGoogle Scholar
  14. 14.
    Davidson I, Ravi SS (2009) Using instance-level constraints in agglomerative hierarchical clustering: Theoretical and empirical results. Data Min Knowl Discov 18 (2):257–282MathSciNetCrossRefGoogle Scholar
  15. 15.
    Deselaers T, Keysers D, Ney H (2008) Features for image retrieval: an experimental comparison. Inf Retr 11 (2):77–107CrossRefGoogle Scholar
  16. 16.
    Do T-T, Kijak E, Furon T, Amsaleg L (2010) Deluding image recognition in sift-based cbir systems. In: Proceedings of the 2nd ACM workshop on multimedia in forensics, security and intelligence, MiFor ’10. ACM, New York, pp 7–12Google Scholar
  17. 17.
    Everitt B, Landau S, Leese M, Stahl D (2011) Cluster analysis, 5th edn. Wiley, New YorkCrossRefMATHGoogle Scholar
  18. 18.
    Geusebroek J-M, Burghouts GJ, Smeulders AWM (2005) The amsterdam library of object images. IJCV 61 (1):103–112CrossRefGoogle Scholar
  19. 19.
    Gordon AD (1987) A review of hierarchical classification. J R Stat Soc Series A (General) 150 (2):119–137CrossRefMATHGoogle Scholar
  20. 20.
    Hetland ML, Skopal T, Lokoč J, Beecks C (2013) Ptolemaic access methods: challenging the reign of the metric space model. Inf Syst 38 (7):989–1006CrossRefGoogle Scholar
  21. 21.
    Huang J, Kumar SR, Mitra M, Zhu W-J, Zabih R (1997) Image indexing using color correlograms. In: Proceedings of the 1997 conference on computer vision and pattern recognition (CVPR ’97). IEEE Computer Society, Washington, p 762CrossRefGoogle Scholar
  22. 22.
    Huttenlocher DP, Klanderman GA, Kl GA, Rucklidge WJ (1993) Comparing images using the Hausdorff distance. IEEE Trans Pattern Anal Mach Intell 15:850–863CrossRefGoogle Scholar
  23. 23.
    Jegou H, Douze M, Schmid C (2008) Hamming embedding and weak geometric consistency for large scale image search. In: Proceedings of the 10th European conference on computer vision: Part I, ECCV ’08. Springer-Verlag, Berlin Heidelberg, pp 304–317Google Scholar
  24. 24.
    Jegou H, Perronnin F, Douze M, Sánchez J, Perez P, Schmid C (2012) Aggregating local image descriptors into compact codes. IEEE Trans Pattern Anal Mach Intell 34 (9):1704–1716CrossRefGoogle Scholar
  25. 25.
    Kruliš M, Lokoč J, Skopal T (2013) Efficient extraction of feature signatures using multi-gpu architecture. In: MMM (2), LNCS, vol 7733. Springer Berlin Heidelberg, pp 446–456Google Scholar
  26. 26.
    Lance GN, Williams WT (1967) A general theory of classificatory sorting strategies: 1. hierarchical systems. The Comput J 9 (4):373–380CrossRefGoogle Scholar
  27. 27.
    Lokoč J, (2014) Approximating the signature quadratic form distance using scalable feature signatures. In: Proceedings of 20th international conference on MultiMedia Modeling (MMM), volume 8325 of lecture notes in computer science. Springer International Publishing, pp 86–97Google Scholar
  28. 28.
    Lokoč J, Blažek A, Skopal T (2014) Signature-based video browser. In: Gurrin C, Hopfgartner F, Hurst W, Johansen H, Lee H, OConnor N (eds) MultiMedia modeling of lecture notes in computer science, vol 8326. Springer International Publishing, pp 415–418Google Scholar
  29. 29.
    Lokoč J, Novák D, Batko M, Skopal T (2012) Visual image search: feature signatures or/and global descriptors. In: Proceedings of the 5th international conference on similarity search and applications, SISAP’12. Springer-Verlag, Berlin Heidelberg, pp 177–191Google Scholar
  30. 30.
    Lux M (2013) Lire: Open source image retrieval in java. In: Proceedings of the 21st ACM international conference on multimedia, MM ’13. ACM, New York, pp 843–846Google Scholar
  31. 31.
    Mikolajczyk K, Schmid C (2005) A performance evaluation of local descriptors. IEEE Trans Pattern Anal Mach Intell 27 (10):1615–1630CrossRefGoogle Scholar
  32. 32.
    MPEG-7 (2002) Multimedia content description interfaces. Part 3: Visual. ISO/IEC 15938–3:2002Google Scholar
  33. 33.
    Park B, Lee K, Lee S (2006) A new similarity measure for random signatures: perceptually modified hausdorff distance. In: Blanc-Talon J, Philips W, Popescu D, Scheunders P (eds) Advanced concepts for intelligent vision systems of lecture notes in computer science, vol 4179. Springer Berlin Heidelberg, pp 990–1001Google Scholar
  34. 34.
    Perronnin F, Liu Y, Sánchez J, Poirier H (2010) Large-scale image retrieval with compressed fisher vectors. In: IEEE conference on computer vision and pattern recognition (CVPR), pp 3384– 3391Google Scholar
  35. 35.
    Rubner Y, Tomasi C (2001) Perceptual metrics for image database navigation. Kluwer Academic Publishers, NorwellCrossRefMATHGoogle Scholar
  36. 36.
    Rubner Y, Tomasi C, Guibas LJ (2000) The earth mover’s distance as a metric for image retrieval. Int J Comput Vision 40 (2):99–121CrossRefMATHGoogle Scholar
  37. 37.
    Sivic J, Zisserman A (2003) Video google: a text retrieval approach to object matching in videos. In: Proceedings of the Ninth IEEE international conference on computer vision, ICCV ’03, vol 2. IEEE Computer Society, Washington, pp 1470–1477Google Scholar
  38. 38.
    Skopal T, Lokoc J, D-cache B Bustos (2012) Universal distance cache for metric access methods. IEEE Trans Knowl Data Eng 24 (5):868–881CrossRefGoogle Scholar
  39. 39.
    Wagstaff K, Cardie C (2000) Clustering with instance-level constraints. In: Proceedings of the Seventeenth international conference on machine learning, ICML ’00. Morgan Kaufmann Publishers Inc, San Francisco, pp 1103–1110Google Scholar
  40. 40.
    Wu L, Hoi SCH, Yu N (2010) Semantics-preserving bag-of-words models and applications. Trans Img Proc 19 (7):1908–1920MathSciNetCrossRefGoogle Scholar
  41. 41.
    Zhao H, Qi Z (2010) Hierarchical agglomerative clustering with ordering constraints. In: Proceedings of the 2010 Third international conference on knowledge discovery and data mining, WKDD ’10. IEEE Computer Society, Washington, pp 195–199CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.SIRET research group, Department of Software Engineering, Faculty of Mathematics and PhysicsCharles University in PraguePragueCzech Republic

Personalised recommendations