Multimedia Tools and Applications

, Volume 74, Issue 4, pp 1249–1266 | Cite as

Classification of Alzheimer’s disease subjects from MRI using hippocampal visual features

  • Olfa Ben AhmedEmail author
  • Jenny Benois-Pineau
  • Michèle Allard
  • Chokri Ben Amar
  • Gwénaëlle Catheline
  • for the Alzheimer’s Disease Neuroimaging Initiative


Indexing and classification tools for Content Based Visual Information Retrieval (CBVIR) have been penetrating the universe of medical image analysis. They have been recently investigated for Alzheimer’s disease (AD) diagnosis. This is a normal “knowledge diffusion” process, when methodologies developed for multimedia mining penetrate a new application area. The latter brings its own specificities requiring an adjustment of methodologies on the basis of domain knowledge. In this paper, we develop an automatic classification framework for AD recognition in structural Magnetic Resonance Images (MRI). The main contribution of this work consists in considering visual features from the most involved region in AD (hippocampal area) and in using a late fusion to increase precision results. Our approach has been first evaluated on the baseline MR images of 218 subjects from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database and then tested on a 3T weighted contrast MRI obtained from a subsample of a large French epidemiological study: “Bordeaux dataset”. The experimental results show that our classification of patients with AD versus NC (Normal Control) subjects achieves the accuracies of 87 % and 85 % for ADNI subset and “Bordeaux dataset” respectively. For the most challenging group of subjects with the Mild Cognitive Impairment (MCI), we reach accuracies of 78.22 % and 72.23 % for MCI versus NC and MCI versus AD respectively on ADNI. The late fusion scheme improves classification results by 9 % in average for these three categories. Results demonstrate very promising classification performance and simplicity compared to the state-of-the-art volumetric AD diagnosis methods.


Content based visual indexing Visual features Circular Harmonic Functions descriptors SVM Bag-of-Visual-Words Late fusion Hippocampus CSF 



This research is supported by the Franco-Tunisian program, the LaBRI, University of Bordeaux 1 and university of Bordeaux 2. Data collection and sharing for this project was funded by the Alzheimer’s Disease Neuroimaging Initiative (ADNI) (National Institutes of Health Grant U01 AG024904) and DOD ADNI (Department of Defense award number W81XWH-12-2-0012). ADNI is funded by the National Institute on Aging, the National Institute of Biomedical Imaging and Bioengineering, and through generous contributions from the following: Alzheimer’s Association; Alzheimer’s Drug Discovery Foundation; BioClinica, Inc.; Biogen Idec Inc.; Bristol-Myers Squibb Company; Eisai Inc.; Elan Pharmaceuticals, Inc.; Eli Lilly and Company; F. Hoffmann-La Roche Ltd and its affiliated company Genentech, Inc.; GE Healthcare; Innogenetics, N.V.; IXICO Ltd.; Janssen Alzheimer Immunotherapy Research & Development, LLC.; Johnson & Johnson Pharmaceutical Research & Development LLC.; Medpace, Inc.; Merck & Co., Inc.; Meso Scale Diagnostics, LLC.; NeuroRx Research; Novartis Pharmaceuticals Corporation; Pfizer Inc.; Piramal Imaging; Servier; Synarc Inc.; and Takeda Pharmaceutical Company. The Canadian Institutes of Health Research is providing funds to support ADNI clinical sites in Canada. Private sector contributions are facilitated by the Foundation for the National Institutes of Health ( The grantee organization is the Northern California Institute for Research and Education, and the study is coordinated by the Alzheimer’s Disease Cooperative Study at the University of California, San Diego. ADNI data are disseminated by the Laboratory for Neuro Imaging at the University of Southern California.


  1. 1.
    Agarwal M, Mostafa J (2010) Image retrieval for Alzheimer disease detection. In: Proceedings of the first MICCAI international conference on medical content-based retrieval for clinical decision support. Springer, Berlin, Heidelberg, MCBR-CDS’09, pp 49–60Google Scholar
  2. 2.
    Akgül CB, Ünay D, Ekin A (2009) Automated diagnosis of Alzheimer’s disease using image similarity and user feedback. In: Proceedings of the ACM international conference on image and video retrieval. ACM, New York, CIVR ’09, pp 1–8Google Scholar
  3. 3.
    Ashburner J, Friston K J (2000) Voxel-based morphometry-the methods. Neuroimage 11 (6):805–821CrossRefGoogle Scholar
  4. 4.
    Ayache S, Quénot G, Gensel J (2007) Classifier fusion for SVM based multimedia semantic indexing. In: Proceedings of the 29th European conference on IR research. Springer, Berlin, ECIR’07, pp 494– 504Google Scholar
  5. 5.
    Bay H, Ess A, Tuytelaars T, Van Gool L (2008) Speeded-Up Robust Features (SURF). Comput Vis Image Underst 110 (3):346–359CrossRefGoogle Scholar
  6. 6.
    Ben Ahmed O, Benois-Pineau J, Ben Amar C, Allard M, Catheline G (2013) Early Alzheimer disease detection with bag-of-visual-words and hybrid fusion on structural MRI. In: 11th international workshop on content-based multimedia indexing (CBMI) 2013. IEEE, pp 79–83Google Scholar
  7. 7.
    Boser BE, Guyon IM, Vapnik VN (1992) A training algorithm for optimal margin classifiers. In: the fifth annual workshop on computational learning theory. ACM, pp 144–152Google Scholar
  8. 8.
    Catheline G, Periot O et al (2010) Distinctive alterations of the cingulum bundle during aging and Alzheimer’s disease. Neurobiol Aging 31 (9):1582–1592CrossRefGoogle Scholar
  9. 9.
    Chupin M, Gérardin E, Cuingnet R et al (2009) Fully automatic hippocampus segmentation and classification in Alzheimer’s disease and mild cognitive impairment applied on data from ADNI. Hippocampus 19 (6):579–587CrossRefGoogle Scholar
  10. 10.
    Chupin M, Hammers A, Liu R S N et al (2009) Automatic segmentation of the hippocampus and the amygdala driven by hybrid constraints: method and validation. NeuroImage 46 (3):749–761CrossRefGoogle Scholar
  11. 11.
    Colliot O, Chételat G, Chupin M et al (2008) Discrimination between Alzheimer disease, mild cognitive impairment, and normal aging by using automated segmentation of the hippocampus. Radiology 248 (1):194–201CrossRefGoogle Scholar
  12. 12.
    Csurka G, Dance CR, Fan L et al (2004) Visual categorization with bags of keypoints. In: Workshop on statistical learning in computer vision, ECCV, pp 1–22Google Scholar
  13. 13.
    Cuingnet R, Gerardin E, Tessieras J et al (2011) Automatic classification of patients with Alzheimer’s disease from structural MRI: a comparison of ten methods using the ADNI database. NeuroImage 56 (2):766–781CrossRefGoogle Scholar
  14. 14.
    Daliri M R (2012) Automated diagnosis of Alzheimer disease using the Scale-invariant feature transforms in magnetic resonance images. J Med Syst 36 (2):995–1000CrossRefGoogle Scholar
  15. 15.
    Gerardin E, Chételat G, Chupin M et al (2009) Multidimensional classification of hippocampal shape features discriminates Alzheimer’s disease and mild cognitive impairment from normal aging. NeuroImage 47 (4):1476–1486CrossRefGoogle Scholar
  16. 16.
    Gutman B, Morra YWJ, Toga A, Thompson P (2009) Disease classification with hippocampal shape invariants. Hippocampus 19 (6):572–578CrossRefGoogle Scholar
  17. 17.
    Klöppel S, Stonnington C M, Chu C et al (2008) Automatic classification of MR scans in Alzheimer’s disease. Brain 131 (3):681–689CrossRefGoogle Scholar
  18. 18.
    Kumar A, Kim J, Cai W, Fulham M, Feng D (2013) Content-based medical image retrieval: a survey of applications to multidimensional and multimodality data. J Digit Imaging 26 (6):1–15CrossRefGoogle Scholar
  19. 19.
    Liu Y, Paajanen T, Zhang Y, Westman E et al (2011) Combination analysis of neuropsychological tests and structural MRI measures in differentiating AD, MCI and control groups-the add neuromed study. Neurobiol Aging 32 (7):1198–1206CrossRefGoogle Scholar
  20. 20.
    Lowe DG (2004) Distinctive image features from scale-invariant keypoints. Int J Comput Vis 60 (2):91–110CrossRefGoogle Scholar
  21. 21.
    Mangin J F, Rivière D, Cachia A, Papadopoulos-Orfanos D et al (2003) Object-based strategy for morphometry of the cerebral cortex. In: IPMI, Ambleside, UK, LNCS-2732. Springer, UK, pp 160–171Google Scholar
  22. 22.
    Mizotin M, Benois-Pineau J, Allard M, Catheline G (2012) Feature-based brain MRI retrieval for Alzheimer disease diagnosis. In: 19th IEEE international conference on image processing (ICIP), pp 1241–1244Google Scholar
  23. 23.
    Müller H, Deserno TM (2011) Content-based medical image retrieval. In: Biomedical image processing—methods and applications. Springer, pp 471–494Google Scholar
  24. 24.
    Müller H, Michoux N, Bandon D, Geissbuhler A (2004) A review of content-based image retrieval systems in medical applications—clinical benefits and future directions. Int J Med Inform 73 (1):1–23CrossRefGoogle Scholar
  25. 25.
    Nyúl L G, Udupa J K, Zhang X (2000) New variants of a method of mri scale standardization. IEEE Trans Med Imaging 19 (2):143–150CrossRefGoogle Scholar
  26. 26.
    Otsu N (1979) A threshold selection method from gray-level histograms. IEEE Trans Syst Man Cybern 9 (1):62–66CrossRefMathSciNetGoogle Scholar
  27. 27.
    Platt JC (1999) Probabilistic outputs for support vector machines and comparisons to regularized likelihood methods. In: Advances in large margin and classifiers. MIT Press, pp 61–74Google Scholar
  28. 28.
    Ridha B H, Barnes J, Van de Pol LA et al (2007) Application of automated medial temporal lobe atrophy scale to Alzheimer disease. Arch Neurol 64 (6):849–854CrossRefGoogle Scholar
  29. 29.
    Rueda A, Arevalo JE, Cruz-Roa A, Romero E, González FA (2012) Bag of features for automatic classification of Alzheimer’s disease in magnetic resonance images. In: CIARP, pp 559–566Google Scholar
  30. 30.
    Scholkopf B, Smola AJ (2001) Learning with kernels: support vector machines, regularization, optimization, and beyond. MIT Press, CambridgeGoogle Scholar
  31. 31.
    Shaw L M, Vanderstichele H, Knapik-Czajka M et al (2009) Cerebrospinal fluid biomarker signature in Alzheimer’s disease neuroimaging initiative subjects. Ann Neurol 65 (4):403–413CrossRefGoogle Scholar
  32. 32.
    Shen K, Bourgeat P, Fripp J, Meriaudeau F, Salvado O (2012) Detecting hippocampal shape changes in Alzheimer’s disease using statistical shape models. NeuroImage 59 (3):2155–2166CrossRefGoogle Scholar
  33. 33.
    Sorgi L, Cimminiello N, Neri A (2006) Keypoints selection in the Gauss Laguerre transformed domain. In: BMVC, British Machine Vision Association, pp 539–547Google Scholar
  34. 34.
    Sorokin DV, Mizotin M, Krylov AS (2011) Gauss-laguerre keypoints extraction using fast hermite projection method. In: Proceedings of the 8th international conference on image analysis and recognition—volume part I. Springer, Berlin, Heidelberg, ICIAR’11, pp 284–293Google Scholar
  35. 35.
    Toews M, Wells W, Collins D L, Arbel T (2010) Feature-based morphometry: discovering group-related anatomical patterns. NeuroImage 49 (3):2318–2327CrossRefGoogle Scholar
  36. 36.
    Tzourio-Mazoyer N, Landeau B, Papathanassiou D et al (2002) Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. NeuroImage 15 (1):273–289CrossRefGoogle Scholar
  37. 37.
    Ünay D, Ekin A, Jasinschi R S (2010) Local structure-based region-of-interest retrieval in brain MR images. IEEE Trans Inf Technol Biomed 14 (4):897–903CrossRefGoogle Scholar
  38. 38.
    Villain N, Desgranges B, Viader F et al (2008) Relationships between hippocampal atrophy, white matter disruption, and gray matter hypometabolism in Alzheimer’s disease. J Neurosci: the official journal of the Society for Neuroscience 28 (24):6174–6181CrossRefGoogle Scholar
  39. 39.
    Wolz R, Julkunen V, Koikkalainen J, Niskanen E et al (2011) Multi-method analysis of mri images in early diagnostics of alzheimer’s disease. PLoS ONE 6 (10): e25,446.  10.1371/journal.pone.0025446 CrossRefGoogle Scholar
  40. 40.
    Yang X, Tan MZ, Qiu A (2012) CSF and brain structural imaging markers of the Alzheimer’s pathological cascade. PLoS ONE 7 (12): e47,406.  10.1371/journal.pone.0047406 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Olfa Ben Ahmed
    • 1
    Email author
  • Jenny Benois-Pineau
    • 1
  • Michèle Allard
    • 1
    • 2
  • Chokri Ben Amar
    • 2
  • Gwénaëlle Catheline
    • 1
    • 2
  • for the Alzheimer’s Disease Neuroimaging Initiative
  1. 1.Laboratoire Bordelais de Recherche en Informatique, LaBRIUniversity of BordeauxBordeauxFrance
  2. 2.The Aquitaine Institute for Cognitive and Integrative NeuroscienceUniversity of BordeauxBordeauxFrance

Personalised recommendations