Advertisement

Multimedia Tools and Applications

, Volume 74, Issue 11, pp 3759–3782 | Cite as

A reversible video steganography algorithm for MVC based on motion vector

  • Guanghua Song
  • Zhitang Li
  • Juan Zhao
  • Jun Hu
  • Hao Tu
Article

Abstract

In this paper we present a reversible video steganography scheme for hiding secret data into the motion vector of each block in 3D MVC videos. Under this approach the idea of the inner product is introduced to achieve reversibility. By establishing the inner product between the motion vector and the modulation vector and setting the embedding conditions, we embed 1 bit data into each motion vector and the proposed algorithm is reversible. Moreover, in order to avoid distortion drift, we only embed data into b4-frames with the coding feature of 3D MVC videos. Experimental results also confirm that the proposed scheme can provide expected acceptable video quality of stegovideos and successfully achieve reversibility.

Keywords

Reversible video steganography Multi-view coding Motion vector Inner product Distortion drift 

Notes

Acknowledgments

The authors would sincerely like to thank the anonymous reviewers of the paper for several insightful comments. They also thank the editor Ms. Angie Malanday for her efforts in revising the paper. The work described in this paper was supported by the National Natural Science Foundation of China under Grant (Name: Research on Steganography for 3D H.264 Video Streams without Intra-frame Distortion Drift. No: 61272407).

References

  1. 1.
    Alattar AM (2004) Reversible watermark using the difference expansion of a generalized integer transform [J]. IEEE Transactions on Image Processing 13(8):1147–115CrossRefMathSciNetGoogle Scholar
  2. 2.
    Aly H (2011) Data hiding in motion vectors of compressed video based on their associated prediction error. IEEE Trans Inf Forensics Secur 6(1):14–18CrossRefMathSciNetGoogle Scholar
  3. 3.
    Barton JM, Method and apparatus for embedding authentication information within digital data. 1997, US Patent 6,115,818.Google Scholar
  4. 4.
    Bender W, Gruhl D, Morimoto N, Lu A (1996) Techniques for data hiding. IBM Syst J 35(no. 3, 4):313–336CrossRefGoogle Scholar
  5. 5.
    Cao Y, Zhao X, Feng D (2012) Video steganalysis exploiting motion vector reversion-based features. IEEE Signal Process Lett 19(1):35–38CrossRefGoogle Scholar
  6. 6.
    Celik MU, Sharma G, Tekalp AM, Saber E (2002) Reversible data hiding. Proc IEEE Int Conf Image Process 2:157–160Google Scholar
  7. 7.
    Chang CC, Lu TC (2006) A difference expansion oriented data hiding scheme for restoring the original host images [J]. The Journal of Systems & Software 79(12):1754–1766CrossRefGoogle Scholar
  8. 8.
    Chang CC, Tai WL, Lin CC (2006) A reversible data hiding scheme based on side-match vector quantization. IEEE Trans Circuits Syst Video Technol 16(10):1301–1308CrossRefGoogle Scholar
  9. 9.
    Fallahpour M, Megías D (2009) Reversible Data Hiding Based on H.264/AVC Intra Prediction. Lecture Notes in Computer Science, no.5450. Springer, Berlin, pp 52–60Google Scholar
  10. 10.
    Fallahpour M, Megias D, Ghanbari M (2011) Reversible and high-capacity data hiding in medical images. IET Image Processing 5(2):190–197CrossRefGoogle Scholar
  11. 11.
    Fang D, Chang L (2006) Data hiding for digital video with phase of motion vector. Proc. Int. Symposium on Circuit and Systems (ISCAS)[C] 1422–1425.Google Scholar
  12. 12.
    Ho YS, Oh KJ. Overview of multi-view video coding. Proc. 14th Int. Workshop Syst. Signals Image Process., 6th EURASIP Conf. Focused Speech Image Process., Multimedia Commun. Services, pp.5–12 2007.Google Scholar
  13. 13.
    Hong W, Chen TS, Chang YP, Shiu CW (2010) A high capacity reversible data hiding scheme using orthogonal projection and prediction error modification. Signal Process 90(11):2911–2922CrossRefzbMATHGoogle Scholar
  14. 14.
    Hsien-Wen T, Chi-Chen C (2008) An extended difference expansion algorithm for reversible Watermarking[J]. Image and Vision Computing 26(8):1148–1153CrossRefGoogle Scholar
  15. 15.
    Hu Y, Lee H-K, Li J (2009) DE-based reversible data hiding with improved overflow location map. IEEE Trans Circuits Syst Video Technol 19(2):250–260CrossRefGoogle Scholar
  16. 16.
    Hwang J, Kim JW, Choi JU (2006) A reversible watermarking based on histogram shifting, Int. Workshop on Digital Watermarking, Lecture Notes in Computer Science 4283:348–361Google Scholar
  17. 17.
    ITU-T Recommendation H.264 and ISO/IEC 14496–10 AVC (2010) Advanced Video Coding for Generic Audiovisual ServicesGoogle Scholar
  18. 18.
    Jing H, He X, Han Q, Niu X (2012) Motion vector based information hiding algorithm for H. 264/AVC against motion vector steganalysis. Intelligent Information and Database Systems Lecture Notes in Computer Science 7197:91–98Google Scholar
  19. 19.
    Kim S, Hong Y, Won C (2007) Data hiding on H.264/AVC compressed video. Image Anal Recog 4633(2007):698–707Google Scholar
  20. 20.
    Kung CH, Jeng JH, Lee YC, Hsiao HH, Cheng WS. Video Watermarking Using Motion Vector. 16th IPPR Conference on computer vision, graphics and image processing, 2003: 547–551.Google Scholar
  21. 21.
    Kutter, M., Jordan, F., Ebrahimi, T.: Proposal of a watermarking technique for hiding/retrieving data in compressed and decompressed video. Technical report M2281, ISO/IEC document, JTC1/SC29/WG11 (1997).Google Scholar
  22. 22.
    Lie WN, Lin CI, Tsai DC, Lin GS (2005) Error resilient coding based on reversible data embedding technique for H.264/AVC video. Proc. IEEE Int. Conf. Multimedia and Expo 1174–1177Google Scholar
  23. 23.
    Merkle P, Smolic A, Mueller K, Wiegand T (2007) Efficient prediction structures for multiview video coding. IEEE Trans Circuits Syst Video Technol 17(11):1461–1473CrossRefGoogle Scholar
  24. 24.
    Ni Z et al (2006) Reversible Data Hiding. IEEE Trans Circuits Syst Video Technol 16(3):354–362CrossRefGoogle Scholar
  25. 25.
    Noorkami M, Mersereau RM (2007) A framework for robust watermarking of H.264-encoded video with controllable detection performance. IEEE Trans Inform Forensics Security 2(1):14–23CrossRefGoogle Scholar
  26. 26.
    Profrock D, Richter H, Schlauweg M, Muller E (2005) H.264-AVC video authentication using skipped macroblocks for an erasable watermark. Proc SPIE Visual Commun Image Process 5960:1480–1489Google Scholar
  27. 27.
    Qin C, Chang CC, Huang YH, Liao LT (2012) An Inpainting-Assisted Reversible Steganographic Scheme Using Histogram Shifting Mechanism. IEEE Transactions on Circuits and Systems for Video Technology, (99): 1–11Google Scholar
  28. 28.
    Thodi DM, Rodriguez JJ (2007) Expansion embedding techniques for reversible watermarking [J]. IEEE Tran On Image Processing 16(3):721–730CrossRefMathSciNetGoogle Scholar
  29. 29.
    Thodi D M, Rodriguez J J. Reversible watermarking by Prediction-error expansion[C], IEEE Southwest Symposium on Image Analysis and Interpretation, Arizona, USA, 2004:21-25Google Scholar
  30. 30.
    Tian J (2003) Reversible data embedding using a difference expansion. IEEE Trans Circuits Syst Video Technol 13(8):890–896CrossRefGoogle Scholar
  31. 31.
    Tsai P, Hu YC, Yeh HL (2009) Reversible image hiding scheme using predictive coding and histogram shifting. Signal Process 89:1129–1143CrossRefzbMATHGoogle Scholar
  32. 32.
    Wang Z, Bovik AC, Sheikh HR, Simoncelli EP (2004) Image quality assessment: From error measurement to structural similarity. IEEE Trans Image Process 13(4):600–612CrossRefGoogle Scholar
  33. 33.
    Yang CY, Lin CH, Hu WC (2011) Reversible data hiding by adaptive IWT-coefficient adjustment. Journal of Information Hiding and Multimedia Signal Processing 2(1):24–32Google Scholar
  34. 34.
    Zhang J, Ho ATS, Qiu G (2007) Robust video watermarking of H.264/AVC. IEEE Trans Circuits Syst II: Express Briefs 54(2):205–209CrossRefGoogle Scholar
  35. 35.
    Zhang J, Li J, Zhang L (2001) Video watermark technique in motion vector. Proc. XIV Symp. Computer Graphics and Image Processing 179–182Google Scholar
  36. 36.
    Zhao Z, Yu N, Li X (2003) A novel video watermarking scheme in compression domain based on fast motion estimation. In: International Conference on Communication Technology 2:1878–1882Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Guanghua Song
    • 1
  • Zhitang Li
    • 1
    • 2
  • Juan Zhao
    • 1
  • Jun Hu
    • 1
  • Hao Tu
    • 1
    • 2
  1. 1.Department of Computer Science and TechnologyHuazhong University of Science and TechnologyWuhanChina
  2. 2.Network and Computing CenterHuazhong University of Science and TechnologyWuhanChina

Personalised recommendations