Multimedia Tools and Applications

, Volume 74, Issue 9, pp 2879–2898 | Cite as

On the effects of sender-receiver concealment mismatch on multimedia communication optimization

  • Enrico Masala
  • Fabio De Vito
  • Juan Carlos De Martin
Article

Abstract

A large number of performance optimization algorithms for multimedia communications, including rate-distortion optimized schemes, rely on knowing the decoder behavior in case of data loss, i.e., the decoder-side error concealment technique. However, for the specific case of video coding, standards do not specify it, thus different decoders may — and typically do — use different concealment techniques. This work investigates the impact of assuming, in the transmission optimization phase, a concealment algorithm different from the one that is actually used by the decoder, in order to determine which are the best assumptions to use at the transmitter. Firstly, we investigate the typical performance provided by ten concealment techniques belonging to three widely used algorithmic families (spatial, temporal and mixed). Then, we assess the impact that an incorrect concealment assumption causes, in terms of both packet transmission policy changes and video quality degradation, using a simple rate-distortion transmission optimization technique that targets a generic two QoS-level network. Simulation results over several standard video sequences show that the performance impact of incorrectly assuming the decoder-side concealment technique may be significant but it is limited if the two techniques belong to the same algorithmic family. Moreover, the impact on performance caused by incorrect assumptions is strongly mitigated if the decoder employs a high-performance concealment algorithm. Finally, the impact on the performance of several parameters such as the encoding pattern, the packet loss statistics (uniform and burst losses) and the amount of high-priority traffic is evaluated, showing that the conclusions can be confidently applied to actual multimedia communication scenarios.

Keywords

H.264 Concealment mismatch Concealment assumption Distortion estimation 

References

  1. 1.
    Baldi M, De Martin J, Masala E, Vesco A (2008) Quality-oriented video transmission with pipeline forwarding. IEEE Trans Broadcast 54(3):542–556CrossRefGoogle Scholar
  2. 2.
    Blake S, Black D, Carlson M, Davies E, Wang Z, Weiss W (1998) An architecture for differentiated services. RFC 2475Google Scholar
  3. 3.
    Bucciol P, Masala E, Filippi E, De Martin J (2007) Cross-layer perceptual ARQ for video communications over 802.11e wireless networks. Adv Multimed (Article ID 13969)Google Scholar
  4. 4.
    Chakareski J, Apostolopoulos J, Wee S, Tan W, Girod B (2005) Rate-distortion hint tracks for adaptive video streaming. IEEE Trans Circ Syst Video Technol 15(10):1257–1269CrossRefGoogle Scholar
  5. 5.
    Chen Z, Pahalawatta P, Tourapis A, Wu D (2012) Improved estimation of transmission distortion for error-resilient video coding. IEEE Trans Circ Syst Video Technol 22(4):636–647CrossRefGoogle Scholar
  6. 6.
    Chou P, Miao Z (2006) Rate-distortion optimized streaming of packetized media. IEEE Trans Multimed 8(2):390–404CrossRefGoogle Scholar
  7. 7.
    Côté G, Shirani S, Kossentini F (2000) Optimal mode selection and synchronization for robust video communications over error-prone networks. IEEE J Sel Areas Commun 18(6):952–965CrossRefGoogle Scholar
  8. 8.
    Cui Z, Gan Z, Zhan X, Zhu X (2012) Error concealment techniques for video transmission over error-prone channels: a survey. J Comput Inf Syst 8(21):8807–8818Google Scholar
  9. 9.
    De Vito F, De Martin J (2005) On the effects of encoder-decoder concealment mismatch on video distortion estimation. In: Proceedings of European signal processing conference (EUSIPCO). Antalya, pp 1588–1591Google Scholar
  10. 10.
    Demirtas A, Reibman A, Jafarkhani H (2011) Performance of H.264 with isolated bit error: packet decode or discard? In: Proceedings of the IEEE international conference on image processing (ICIP). Brussels, pp 949–952Google Scholar
  11. 11.
    Gao S (2012) Boundary matching based spatial interpolation for consecutive block loss concealment. In: Proceedings of the IEEE international symposium on multimedia (ISM). Irvine, pp 128–132Google Scholar
  12. 12.
    Hand J, Melkote V, Rose K (2011) A spectral approach to recursive end-to-end distortion estimation for sub-pixel motion-compensated video coding. In: Proceedings of the IEEE international conference on acoustics, speech and signal processing (ICASSP). Prague, pp 825–828Google Scholar
  13. 13.
    Hand J, Melkote V, Rose K (2012) A unified estimation-theoretic framework for error-resilient scalable video coding. In: Proceedings of the IEEE international conference on multimedia & expo (ICME). Melbourne, pp 67–72Google Scholar
  14. 14.
    ITU-T & ISO/IEC (2005) Advanced video coding for generic audiovisual services. Std. H.264 & 14496–10Google Scholar
  15. 15.
    Joint Video Team (JVT) of ISO/IEC MPEG & ITU-T VCEG (2011) Joint model number 8.2 (JM-8.2). http://iphome.hhi.de/suehring/tml/download
  16. 16.
    Koloda J, Østergaard J, Jensen S, Sánchez V, Peinado A (2013) Sequential error concealment for video/images by sparse linear prediction. IEEE Trans Multimed 15(4):957–969CrossRefGoogle Scholar
  17. 17.
    Maani E, Katsaggelos A (2010) Unequal error protection for robust streaming of scalable video over packet lossy networks. IEEE Trans Circ Syst Video Technol 20(3):407–416CrossRefGoogle Scholar
  18. 18.
    Masala E, De Martin J (2003) Analysis-by-synthesis distortion computation for rate-distortion optimized multimedia streaming. In: Proceedings of the IEEE international conference on multimedia & expo, vol 3, Baltimore, pp 345–348Google Scholar
  19. 19.
    Masala E, Vesco A, Baldi M, De Martin J (2009) Optimized H.264 video encoding and packetization for video transmission over pipeline forwarding networks. IEEE Trans Multimed 11(5):972–985CrossRefGoogle Scholar
  20. 20.
    Midya A, Sengupta S (2011) Hybrid temporal/spatial error concealment strategy robust to scene transitions. In: Proceedings of the IEEE pacific RIM conference on communications, computers, and signal processing. Victoria, pp 416–421Google Scholar
  21. 21.
    Purandare R, Kshirsagar S, Koli S, Gohokar V (2011) Impact of bit error on video transmission over wireless networks and error resiliency. In: Proceedings of the international conference on image information processing (ICIIP). Himachal PradeshGoogle Scholar
  22. 22.
    Shoham Y, Gersho A (1988) Efficient bit allocation for an arbitrary set of quantizers. IEEE Trans Acoust Speech Sig Process 36(9):1445–1453CrossRefMATHGoogle Scholar
  23. 23.
    Superiori L, Nemethova O, Rupp M (2012) Error concealment analysis for H.264/advanced video coding encoded video sequences. Elektrotechnik & Informationstechnik 129(6):387–399CrossRefGoogle Scholar
  24. 24.
    Yang H, Rose K (2007) Advances in recursive per-pixel end-to-end distortion estimation for robust video coding in H.264/AVC. IEEE Trans Circ Syst Video Technol 17(7):845–856CrossRefGoogle Scholar
  25. 25.
    Yang Q, Wang Y, Jiang X (2012) Error concealment algorithms and quality evaluation for H.264 videos. In: Proceedings of the 8th international conference on wireless communications, networking and mobile computing (WiCOM). ShanghaiGoogle Scholar
  26. 26.
    Zhang Y, Xiang X, Zhao D, Ma S, Gao W (2012) Packet video error concealment with auto regressive model. IEEE Trans Circ Syst Video Technol 22(1):12–27CrossRefGoogle Scholar
  27. 27.
    Zhou J, Yan B, Gharavi H (2011) Efficient motion vector interpolation for error concealment of H.264/AVC. IEEE Trans Broadcast 57(1):75–80CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Enrico Masala
    • 1
  • Fabio De Vito
    • 1
  • Juan Carlos De Martin
    • 1
  1. 1.Control and Computer Engineering DepartmentPolitecnico di TorinoTorinoItaly

Personalised recommendations