Multimedia Tools and Applications

, Volume 74, Issue 3, pp 1045–1066 | Cite as

Demystifying the design of mobile augmented reality applications

  • Panos E. Kourouthanassis
  • Costas Boletsis
  • George Lekakos


This research proposes a set of interaction design principles for the development of mobile augmented reality (MAR) applications. The design recommendations adopt a user-centered perspective and, thus, they focus on the necessary actions to ensure high-quality MAR user experiences. To formulate our propositions we relied on theoretical grounding and an evaluation of eight MAR applications that provide published records of their design properties. The design principles have then been applied to guide the development of a MAR travel application. We performed a field study with 33 tourists in order to elicit whether our design choices effectively lead to enhanced satisfaction and overall user experience. Results suggest that the proposed principles contribute to ensuring high usability and performance of the MAR application as well as evoking positive feelings during user and system interactions. Our prescriptions may be employed either as a guide during the initial stages of the design process (ex-ante usage) or as a benchmark to assess the performance (ex-post usage) of MAR applications.


Mobile augmented reality Design principles Field study User experience 


  1. 1.
    Abowd GD, Mynatt ED (2000) Charting past, present, and future research in ubiquitous computing. ACM Trans Comput-Hum Interact 7(1):29–58. doi: 10.1145/344949.344988 CrossRefGoogle Scholar
  2. 2.
    Anacleto R, Luz N, Figueiredo L (2010) Personalized sightseeing tours support using mobile devices. In: Forbrig P, Paternó F, Mark Pejtersen A (eds) Human-computer interaction, vol 332. IFIP advances in information and communication technology. Springer, Berlin Heidelberg, pp 301–304. doi: 10.1007/978-3-642-15231-3_35 Google Scholar
  3. 3.
    Anastassova M, Megard C, Burkhardt J-M (2007) Prototype evaluation and user-needs analysis in the early design of emerging technologies. In: Jacko J (ed) Human-computer interaction. Interaction design and usability, vol 4550. Lecture notes in computer science. Springer, Berlin Heidelberg, pp 383–392. doi: 10.1007/978-3-540-73105-4_42 Google Scholar
  4. 4.
    Arvanitis T, Petrou A, Knight J, Savas S, Sotiriou S, Gargalakos M, Gialouri E (2009) Human factors and qualitative pedagogical evaluation of a mobile augmented reality system for science education used by learners with physical disabilities. Pers Ubiquit Comput 13(3):243–250. doi: 10.1007/s00779-007-0187-7 CrossRefGoogle Scholar
  5. 5.
    Arvanitis TN, Williams DD, Knight JF, Baber C, Gargalakos M, Sotiriou S, Bogner FX (2011) A human factors study of technology acceptance of a prototype mobile augmented reality system for science education. Adv Sci Lett 4(11–12):3342–3352. doi: 10.1166/asl.2011.2044 CrossRefGoogle Scholar
  6. 6.
    Aryan A, Singh S (2010) Securing location privacy in Augmented Reality. In: Industrial and Information Systems (ICIIS), 2010 International Conference on, July 29 2010-Aug. 1 2010, pp 172–176. doi: 10.1109/ICIINFS.2010.5578714
  7. 7.
    Azuma R, Baillot Y, Behringer R, Feiner S, Julier S, MacIntyre B (2001) Recent advances in augmented reality. IEEE Comput Graph Appl 21(6):34–47. doi: 10.1109/38.963459 CrossRefGoogle Scholar
  8. 8.
    Baldauf M, Lasinger K, Fr P, #246, hlich (2012) Private public screens: detached multi-user interaction with large displays through mobile augmented reality. Paper presented at the Proceedings of the 11th International Conference on Mobile and Ubiquitous Multimedia, Ulm, GermanyGoogle Scholar
  9. 9.
    Balduini M, Celino I, Dell’Aglio D, Della Valle E, Huang Y, Lee T, Kim S-H, Tresp V (2012) BOTTARI: an augmented reality mobile application to deliver personalized and location-based recommendations by continuous analysis of social media streams. Web Semant Sci Serv Agents World Wide Web 16:33–41. doi: 10.1016/j.websem.2012.06.004 CrossRefGoogle Scholar
  10. 10.
    Biocca F, Lamas D, Gai P, Brady R (2001) Mapping the semantic asymmetries of virtual and augmented reality space. In: Beynon M, Nehaniv C, Dautenhahn K (eds) Cognitive technology: instruments of mind, vol 2117. Lecture notes in computer science. Springer, Berlin Heidelberg, pp 117–122. doi: 10.1007/3-540-44617-6_11 Google Scholar
  11. 11.
    Bolter JD, Engberg M, MacIntyre B (2013) Media studies, mobile augmented reality, and interaction design. Interactions 20(1):36–45. doi: 10.1145/2405716.2405726 CrossRefGoogle Scholar
  12. 12.
    Bordallo López M, Hannuksela J, Silvén O, Vehviläinen M (2012) Interactive multi-frame reconstruction for mobile devices. Multimed Tools Appl 1–21. doi: 10.1007/s11042-012-1252-4
  13. 13.
    Carmigniani J, Furht B, Anisetti M, Ceravolo P, Damiani E, Ivkovic M (2011) Augmented reality technologies, systems and applications. Multimed Tools Appl 51(1):341–377. doi: 10.1007/s11042-010-0660-6 CrossRefGoogle Scholar
  14. 14.
    Dahne P, Karigiannis JN (2002) Archeoguide: system architecture of a mobile outdoor augmented reality system. In: Mixed and augmented reality, 2002. ISMAR 2002. Proceedings. International Symposium on, 2002, pp 263–264 doi: 10.1109/ismar.2002.1115103
  15. 15.
    Dix A, Rodden T, Davies N, Trevor J, Friday A, Palfreyman K (2000) Exploiting space and location as a design framework for interactive mobile systems. ACM Trans Comput-Hum Interact 7(3):285–321. doi: 10.1145/355324.355325 CrossRefGoogle Scholar
  16. 16.
    Dubois E, Nigay L (2000) Augmented reality: Which augmentation for which reality? In: Designing augmented reality environments. DARE’00, New York, NY, USA, ACM, pp 165–166Google Scholar
  17. 17.
    Dünser A, Grasset R, Seichter H, Billinghurst M (2007) Applying HCI principles to AR systems design. In: 2nd International Workshop at the IEEE Virtual Reality. Charlotte, NC, USA, pp 37–42Google Scholar
  18. 18.
    Emmanouilidis C, Koutsiamanis R-A, Tasidou A (2013) Mobile guides: taxonomy of architectures, context awareness, technologies and applications. J Netw Comput Appl 36(1):103–125. doi: 10.1016/j.jnca.2012.04.007 CrossRefGoogle Scholar
  19. 19.
    Gammeter S, Gassmann A, Bossard L, Quack T, Van Gool L (2010) Server-side object recognition and client-side object tracking for mobile augmented reality. In: Computer vision and pattern recognition workshops (CVPRW), 2010 I.E. Computer Society Conference on, 13–18 June 2010, pp 1–8 doi: 10.1109/CVPRW.2010.5543248
  20. 20.
    Ganapathy S (2013) Design guidelines for mobile augmented reality: user experience. In: Huang W, Alem L, Livingston MA (eds) Human factors in augmented reality environments. Springer, New York, pp 165–180CrossRefGoogle Scholar
  21. 21.
    Gavalas D, Konstantopoulos C, Mastakas K, Pantziou G Mobile recommender systems in tourism. J Netw Comput Appl (0). doi: 10.1016/j.jnca.2013.04.006
  22. 22.
    Gonzalez-Sanchez J, Conley Q, Chavez-Echeagaray M-E, Atkinson RK (2012) Supporting the assembly process by leveraging augmented reality, cloud computing, and mobile devices. IGI Global. doi: 10.4018/ijcbpl.2012070107 MATHGoogle Scholar
  23. 23.
    Hagbi N, Bergig O, El-Sana J, Billinghurst M (2011) Shape recognition and pose estimation for mobile augmented reality. IEEE Trans Vis Comput Graph 17(10):1369–1379. doi: 10.1109/tvcg.2010.241 CrossRefGoogle Scholar
  24. 24.
    Haugstvedt AC, Krogstie J (2012) Mobile augmented reality for cultural heritage: A technology acceptance study. In: Mixed and augmented reality (ISMAR), 2012 I.E. International Symposium on, 5–8 Nov. 2012, pp 247–255 doi: 10.1109/ISMAR.2012.6402563
  25. 25.
    Hollerer T, Feiner S (2004) Mobile augmented reality. In: Karimi H, Hammad A (eds) Telegeoinformatics: Location-based computing and services. Taylor & Francis, pp 221–262Google Scholar
  26. 26.
    Hürst W, Wezel C (2013) Gesture-based interaction via finger tracking for mobile augmented reality. Multimed Tools Appl 62(1):233–258. doi: 10.1007/s11042-011-0983-y CrossRefGoogle Scholar
  27. 27.
    Kalkofen D, Mendez E, Schmalstieg D (2007) Interactive focus and context visualization for augmented reality. Paper presented at the Proceedings of the 2007 6th IEEE and ACM International Symposium on Mixed and Augmented RealityGoogle Scholar
  28. 28.
    Karpischek S, Marforio C, Godenzi M, Heuel S, Michahelles F (2009) Mobile augmented reality to identify mountains. In: 3rd European Conference on Ambient Intelligence (AmI-09), Salzburg, AustriaGoogle Scholar
  29. 29.
    Keil J, Zoellner M, Engelke T, Wientapper F, Schmitt M (2013) Controlling and filtering information density with spatial interaction techniques via handheld augmented reality. In: Shumaker R (ed) Virtual augmented and mixed reality. Designing and developing augmented and virtual environments, vol 8021. Lecture notes in computer science. Springer, Berlin Heidelberg, pp 49–57. doi: 10.1007/978-3-642-39405-8_6 CrossRefGoogle Scholar
  30. 30.
    Kim MJ (2013) A framework for context immersion in mobile augmented reality. Autom Constr 33:79–85. doi: 10.1016/j.autcon.2012.10.020 CrossRefGoogle Scholar
  31. 31.
    Klopfer E, Squire K (2008) Environmental detectives—the development of an augmented reality platform for environmental simulations. Education Tech Research Dev 56(2):203–228. doi: 10.1007/s11423-007-9037-6 CrossRefGoogle Scholar
  32. 32.
    Ko SM, Chang WS, Ji YG (2013) Usability principles for augmented reality applications in a smartphone environment. Int J Hum-Comput Interact 29(8):501–515. doi: 10.1080/10447318.2012.722466 CrossRefGoogle Scholar
  33. 33.
    Krevelen DWF, Poelman R (2010) A survey of augmented reality technologies, applications and limitations. Int J Virtual Reality 9(2):1–20Google Scholar
  34. 34.
    Langlotz T, Mooslechner S, Zollmann S, Degendorfer C, Reitmayr G, Schmalstieg D (2012) Sketching up the world: in situ authoring for mobile augmented reality. Pers Ubiquit Comput 16(6):623–630. doi: 10.1007/s00779-011-0430-0 CrossRefGoogle Scholar
  35. 35.
    Lee JY, Seo DW, Rhee GW (2011) Tangible authoring of 3D virtual scenes in dynamic augmented reality environment. Comput Ind 62(1):107–119. doi: 10.1016/j.compind.2010.07.003 CrossRefMATHGoogle Scholar
  36. 36.
    Linaza MT, Marimon D, Carrasco P, Alvarez R, Montesa J, Aguilar S, Diez G (2012) Evaluation of mobile augmented reality applications for tourism destinations. In: Fuchs M, Ricci F, Cantoni L (eds) Information and communication technologies in tourism 2012. Springer, Vienna, pp 260–271. doi: 10.1007/978-3-7091-1142-0_23 CrossRefGoogle Scholar
  37. 37.
    Liu C, Huot S, Diehl J, Mackay W, Beaudouin-Lafon M (2012) Evaluating the benefits of real-time feedback in mobile augmented reality with hand-held devices. Paper presented at the Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, Austin, Texas, USAGoogle Scholar
  38. 38.
    Mehrabian A, Russell JA (1974) An approach to environmental psychology. MIT Press, CambridgeGoogle Scholar
  39. 39.
    Milgram P, Takemura H, Utsumi A, Kishino F (1995) Augmented reality: a class of displays on the reality - virtuality continuum. In: SPIE Conference on Telemanipulator and Telepresence Technologies, pp 282–292Google Scholar
  40. 40.
    Nilsson EG (2009) Design patterns for user interface for mobile applications. Adv Eng Softw 40(12):1318–1328. doi: 10.1016/j.advengsoft.2009.01.017 CrossRefGoogle Scholar
  41. 41.
    Oh S, Byun Y-C (2012) A user-adaptive augmented reality system in mobile computing environment. In: Lee R (ed) Software and network engineering, vol 413. Studies in computational intelligence. Springer, Berlin Heidelberg, pp 41–53. doi: 10.1007/978-3-642-28670-4_4 Google Scholar
  42. 42.
    Oinas-Kukkonen H, Kurkela V (2003) Developing successful mobile applications. In: International Conference on Computer Science and Technology (IASTED). Cancun, Mexico, pp 50–54Google Scholar
  43. 43.
    Olsson T (2013) Concepts and subjective measures for evaluating user experience of mobile augmented reality services. In: Huang W, Alem L, Livingston MA (eds) Human factors in augmented reality environments. Springer, New York, pp 203–232CrossRefGoogle Scholar
  44. 44.
    Olsson T, Kärkkäinen T, Lagerstam E, Ventä-Olkkonen L (2012) User evaluation of mobile augmented reality scenarios. J Ambient Intell Smart Environ 4(1):29–47. doi: 10.3233/ais-2011-0127 Google Scholar
  45. 45.
    Olsson T, Lagerstam E, Karkkainen T, Vaananen-Vainio-Mattila K (2013) Expected user experience of mobile augmented reality services: a user study in the context of shopping centres. Pers Ubiquit Comput 17(2):287–304. doi: 10.1007/s00779-011-0494-x CrossRefGoogle Scholar
  46. 46.
    Papakonstantinou S, Brujic-Okretic V (2009) Framework for context-aware smartphone applications. Vis Comput 25(12):1121–1132CrossRefGoogle Scholar
  47. 47.
    Pappas I, Giannakos M, Kourouthanassis P, Chrissikopoulos V (2013) Assessing emotions related to privacy and trust in personalized services. In: Douligeris C, Polemi N, Karantjias A, Lamersdorf W (eds) Collaborative, trusted and privacy-aware e/m-services, vol 399. IFIP advances in information and communication technology. Springer, Berlin Heidelberg, pp 38–49. doi: 10.1007/978-3-642-37437-1_4 Google Scholar
  48. 48.
    Piekarski W, Thomas B (2002) ARQuake: the outdoor augmented reality gaming system. Commun ACM 45(1):36–38. doi: 10.1145/502269.502291 CrossRefGoogle Scholar
  49. 49.
    Qian X, Yang Y, Gong Y (2011) The art of metaphor: a method for interface design based on mental models. Paper presented at the Proceedings of the 10th International Conference on Virtual Reality Continuum and Its Applications in Industry, Hong Kong, ChinaGoogle Scholar
  50. 50.
    Ray B, Han R (2012) SecureWear: A framework for securing mobile social networks. In: Meghanathan N, Chaki N, Nagamalai D (eds) Advances in computer science and information technology. Computer science and engineering, vol 85. Lecture notes of the institute for computer sciences, social informatics and telecommunications engineering. Springer, Berlin Heidelberg, pp 515–524. doi: 10.1007/978-3-642-27308-7_55 Google Scholar
  51. 51.
    Rosenblum L, Feiner S, Julier S, Swan JE II, Livingston M (2012) The development of mobile augmented reality. In: Dill J, Earnshaw R, Kasik D, Vince J, Wong PC (eds) Expanding the frontiers of visual analytics and visualization. Springer, London, pp 431–448. doi: 10.1007/978-1-4471-2804-5_24 CrossRefGoogle Scholar
  52. 52.
    Sa Md, Churchill E (2012) Mobile augmented reality: exploring design and prototyping techniques. Paper presented at the Proceedings of the 14th international conference on Human-computer interaction with mobile devices and services, San Francisco, California, USAGoogle Scholar
  53. 53.
    Sá M, Churchill E (2013) Mobile augmented reality: A design perspective. In: Huang W, Alem L, Livingston MA (eds) Human factors in augmented reality environments. Springer, New York, pp 139–164Google Scholar
  54. 54.
    Sadeh N, Hong J, Cranor L, Fette I, Kelley P, Prabaker M, Rao J (2009) Understanding and capturing people's privacy policies in a mobile social networking application. Pers Ubiquit Comput 13(6):401–412. doi: 10.1007/s00779-008-0214-3 CrossRefGoogle Scholar
  55. 55.
    Savio N, Braiterman J (2007) Design sketch: the context of mobile interaction. In: Mobile HCI, pp 284–286Google Scholar
  56. 56.
    Shokri R, Freudiger J, Hubaux JP (2010) A unified framework for location privacy. In: In Proceedings of the 9th International Symposium on Privacy Enhancing Technologies, pp 203–214Google Scholar
  57. 57.
    Sigg S, Schuermann D, Ji Y (2012) PINtext: A framework for secure communication based on context. In: Puiatti A, Gu T (eds) Mobile and ubiquitous systems: Computing, networking, and services, vol 104. Lecture notes of the institute for computer sciences, social informatics and telecommunications engineering. Springer, Berlin Heidelberg, pp 314–325. doi: 10.1007/978-3-642-30973-1_31 Google Scholar
  58. 58.
    Venkatesh V, Thong JYL, Xu X (2012) Consumer acceptance and use of information technology: extending the unified theory of acceptance and use of technology. MIS Q 36(1):157–178Google Scholar
  59. 59.
    Verbelen T, Stevens T, Simoens P, De Turck F, Dhoedt B (2011) Dynamic deployment and quality adaptation for mobile augmented reality applications. J Syst Softw 84(11):1871–1882. doi: 10.1016/j.jss.2011.06.063 CrossRefGoogle Scholar
  60. 60.
    Vlahakis V, Ioannidis M, Karigiannis J, Tsotros M, Gounaris M, Stricker D, Gleue T, Daehne P, Almeida L (2002) Archeoguide: an augmented reality guide for archaeological sites. IEEE Comput Graph Appl 22(5):52–60. doi: 10.1109/mcg.2002.1028726 CrossRefGoogle Scholar
  61. 61.
    Walls JG, Widmeyer GR, El Sawy OA (1992) Building an information system design theory for vigilant EIS. Inf Syst Res 3(1):36–59. doi: 10.1287/isre.3.1.36 CrossRefGoogle Scholar
  62. 62.
    Wei C, Wang CN, Ramnath R, Ramanathan J (2012) Examining the practical challenges of an augmented reality cyber-infrastructure framework. Paper presented at the Proceedings of the 27th Annual ACM Symposium on Applied Computing, Trento, ItalyGoogle Scholar
  63. 63.
    World Tourism Organization (2007) Handbook on tourism market segmentation - maximising marketing effectiveness. World Tourism Organization, MadrisGoogle Scholar
  64. 64.
    Zhu W, Owen CB (2008) Design of the PromoPad: an automated augmented-reality shopping assistant. IGI Global. doi: 10.4018/joeuc.2008070103 Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Panos E. Kourouthanassis
    • 1
  • Costas Boletsis
    • 2
  • George Lekakos
    • 3
  1. 1.Department of InformaticsIonian UniversityCorfuGreece
  2. 2.Faculty of Computer Science and Media TechnologyGjøvik University CollegeGjøvikNorway
  3. 3.Department of Management Science and TechnologyAthens University of Economics and BusinessAthensGreece

Personalised recommendations