Multimedia Tools and Applications

, Volume 72, Issue 2, pp 1841–1865 | Cite as

Quality-aware predictor-based adaptation of still images for the multimedia messaging service

Article

Abstract

The Multimedia Messaging Service (MMS) allows users with heterogeneous terminals to exchange structured messages composed of text, images, sound, and video. The MMS market is growing rapidly, posing the problem of MMS adaptation, which is necessary to ensure terminal interoperability. Message adaptation involves technological challenges, especially considering the high volume of messages that this service can handle. In this work, we propose novel predictor-based dynamic programming approaches to MMS adaptation, which provide a framework for explicit maximization of the user experience, rather than relying on heuristics to deliver adapted messages satisfactorily. We show that the proposed solutions lead to noticeably superior image quality and faster transcoding times than comparable algorithms offered in products currently on the market and those described in the literature.

Keywords

MMS Image adaptation JPEG Optimization Predictor Dynamic programming SSIM 

References

  1. 1.
    ImageMagick and Magick+ + (2013) http://www.imagemagick.org. Accessed 10 February 2013
  2. 2.
    The Independent JPEG Group (2013) http://www.ijg.org. Accessed 10 February 2013
  3. 3.
    Clark-Dickson P (2012) SMS will remain more popular than mobile messaging apps over next five years. Informa telecoms and media. http://blogs.informatandm.com/4971/press-releasesms-will-remain-moreQ3popular-than-mobile-messaging-apps-over-next-five-years. Accessed 10 February 2013
  4. 4.
    mobiThinking (2012) Global mobile statistics 2012 Part C: Mobile marketing, advertising and messaging. http://mobithinking.com/mobile-marketing-tools/latest-mobile-stats/c. Accessed 10 February 2013
  5. 5.
    Portio research (2012) Mobile messaging futures 2012–2016. http://www.portioresearch.com/en/reports/current-portfolio/mobile-messaging-futures-2012-2016.aspx. Accessed 10 February 2013
  6. 6.
    3GPP TS 23.140 V6.16.0: multimedia message service (MMS); functional description; stage 2 (Release 6) (2009). http://www.3gpp.org/ftp/Specs
  7. 7.
    Acharya T, Tsai PS (2004) JPEG 2000 standard for image compression: concepts, algorithms, VLSI architectures. Wiley-InterscienceGoogle Scholar
  8. 8.
    Bellman R (2003) Dynamic programming. Dover, New YorkMATHGoogle Scholar
  9. 9.
    Blackman RB, Tukey J (1959) The measurement of power spectra, from the point of view of communications engineering. DoverGoogle Scholar
  10. 10.
    Chen RCS, Yang SJH, Zhang J (2010) Enhancing the precision of content analysis in content adaptation using entropy-based fuzzy reasoning. Expert Syst Appl 37:5706–5719CrossRefGoogle Scholar
  11. 11.
    Coulombe S, Grassel G (2004) Multimedia adaptation for the multimedia messaging service. IEEE Communication Magazine 42(7):120–126CrossRefGoogle Scholar
  12. 12.
    Coulombe S, Pigeon S (2009) Quality-aware selection of quality factor and scaling parameters in jpeg image transcoding. In: Procs. IEEE 2009 computational intelligence for multimedia, signal, and video processing (CIMSVP)Google Scholar
  13. 13.
    Coulombe S, Pigeon S (2010) Low-complexity transcoding of JPEG images with near-optimal quality using a predictive quality factor and scaling parameters. IEEE Trans Image Process 19(3):712–721CrossRefMathSciNetGoogle Scholar
  14. 14.
    Dieckmann A, Dippold K, Dietrich H (2009) Compensatory versus noncompensatory models for predicting consumer preferences. Judgm Decis Mak 4(3):200–213Google Scholar
  15. 15.
    Dugad D, Ahuja A (2001) A fast scheme for image size change in the compressed domain. IEEE Trans Circ Syst Video Technol 11(4):461–474CrossRefGoogle Scholar
  16. 16.
    Han R, Bhagwat P, LaMaire R, Mummert T, Perret V, Rubas J (1998) Dynamic adaptation in an image transcoding proxy for mobile web browsing. IEEE Pers Commun Mag 5(6):8–17CrossRefGoogle Scholar
  17. 17.
    Hillier FS, Lieberman GJ (2009) Introduction to operations research, 9th edn. McGraw-Hill ScienceGoogle Scholar
  18. 18.
    Ishihara T (2002) The distribution of the sum and the product of independent uniform random variables distributed at different intervals. Trans Japanese Soc Ind Appl Math 12(3):197–207Google Scholar
  19. 19.
    Dwyer J III (2011) MMS to prosper as mobile marketing becomes mainstream. Wireless WeekGoogle Scholar
  20. 20.
    Lee L, Anderson R (2009) A comparison of compensatory and non-compensatory decision making strategies in IT project portfolio management. http://aisel.aisnet.org/irwitpm2009/9
  21. 21.
    Louafi H, Coulombe S, Chandra U (2012) Quality prediction-based dynamic content adaptation framework applied to collaborative mobile presentations. EEE Trans Mobile Comput 99:1–1. (preprints) doi:10.1109/TMC.2012.173 Google Scholar
  22. 22.
    Louafi H, Coulombe S, Chandra U (2013) Efficient near-optimal dynamic content adaptation applied to JPEG slides presentations in mobile web conferencing. In: Procs. IEEE international conference on advanced information networking and applications (AINA-2013), pp 724–731Google Scholar
  23. 23.
    Mohan R, Smith JR, Li CS (1999) Adapting multimedia internet content for universal access. IEEE Trans Multimedia 1(1):104–114CrossRefGoogle Scholar
  24. 24.
    Mukherjee J, Mitra SK (2002) Image resizing in the compressed domain using subband DCT. IEEE Trans Circ Syst Video Technol 12(7):620–627CrossRefGoogle Scholar
  25. 25.
    Nokia (2003) How to create MMS services. WhitepaperGoogle Scholar
  26. 26.
    Open Mobile Alliance (2007) Standard transcoding interface specification version 1.0. OMA-TS-STI-V1_0-20070515-AGoogle Scholar
  27. 27.
    Open Mobile Alliance (2011) Multimedia messaging service architecture version 1.3. OMA-AD-MMS-V1_3-20110913-AGoogle Scholar
  28. 28.
    Open Mobile Alliance (2011) Multimedia messaging service client transactions. OMA-TS-MMS_CTR-V1_3-20110913-AGoogle Scholar
  29. 29.
    Open Mobile Alliance (2011) Multimedia messaging service conformance document. OMA-TS-MMS_CONF-V1_3-20110913-AGoogle Scholar
  30. 30.
    Pannu P, Tomar Y (2010) ICT4D information communication technology for development. IK International Pvt LtdGoogle Scholar
  31. 31.
    Papadimitriou CH, Steiglitz K (1998) Combinatorial optimization: algorithms and complexity. DoverGoogle Scholar
  32. 32.
    Pennebaker WB, Mitchell JL (1992) JPEG still image data compression standard. Kluwer Academic PublishersGoogle Scholar
  33. 33.
    Pigeon S, Coulombe S (2008) Computationally efficient algorithms for predicting the file size of jpeg images subject to changes of quality factor and scaling. In: Procs. 24th Queen’s University Biennial symposium on communicationsGoogle Scholar
  34. 34.
    Pigeon S, Coulombe S (2011) Efficient clustering-based algorithm for predicting file size and structural similarity of tanscoded JPEG images. In: Procs. IEEE international symposium on multimedia (ISM), pp 137–142Google Scholar
  35. 35.
    Pigeon S, Coulombe S (2011) Optimal quality-aware predictor-based adaptation of multimedia messages. In: Procs. the 6th IEEE Int. conf. on intelligent data acquisition and advanced computing systems: technology and applications, pp 496–499Google Scholar
  36. 36.
    Rezazadeh S, Coulombe S (2010) Low-complexity computation of visual information fidelity in the discrete wavelet domain. In: IEEE International conference onacoustics speech and signal processing (ICASSP) 2010, pp 2438–2441Google Scholar
  37. 37.
    Rezazadeh S, Coulombe S (2012) A novel discrete wavelet domain error-based image quality metric with enhanced perceptual performance. Int J Comput Electr Eng 4(2):390–395CrossRefGoogle Scholar
  38. 38.
    Ridge J (2003) Efficient transform-domain size and resolution reduction of images. Signal Process Image Commun 18(8):621–639CrossRefGoogle Scholar
  39. 39.
    Sheikh H, Bovik A, de Veciana G (2005) An information fidelity criterion for image quality assessment using natural scene statistics. IEEE Trans Image Process 14(12):2117–2128CrossRefGoogle Scholar
  40. 40.
    Sheikh HR, Seshadrinathan K, Moorthy AK, Wang Z, Bovik AC, Cormack LK (2013) Image and video quality assessment research at LIVE. http://live.ece.utexas.edu/research/quality. Accessed 10 February 2013
  41. 41.
    Springer MD, Thompson WE (1966) The distribution of products of independent random variables. SIAM J Appl Math 14(3):511–526CrossRefMATHMathSciNetGoogle Scholar
  42. 42.
    Springer MD, Thompson WE (1970) The distribution of the products of beta, gamma and Gaussian random variables. SIAM J Appl Math 18(4):721–737CrossRefMATHMathSciNetGoogle Scholar
  43. 43.
    Taubman D, Marcellin M (2002) JPEG2000: image compression fundamentals, standards and practice. SpringerGoogle Scholar
  44. 44.
    Wang Z, Bovick AC, Sheikh HR, Simoncelli EP (2004) Image quality assessment: from error visibility to structural similarity. IEEE Trans Image Process 13(4):600–612CrossRefGoogle Scholar
  45. 45.
    Wang Z, Bovik A (2006) Modern image quality assessment. Synthesis lectures on image, video, & multimedia processing. Morgan & Claypool. http://books.google.ca/books?id=F6lYVwyZJz4C
  46. 46.
    Wang Z, Bovik AC, Simoncelli EP (2005) Structural approaches to image quality assessment, 2nd edn. Academic PressGoogle Scholar
  47. 47.
    Wang Z, Li Q (2011) Information content weighting for perceptual image quality assessment. IEEE Trans Image Process 20(5):1185–1198CrossRefMathSciNetGoogle Scholar
  48. 48.
    Yan WQ, Kankanhalli MS (2007) Multimedia simplification for optimized MMS synthesis. ACM Trans Multimed Comput Commun Appl (TOMCCAP) 3(1)Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Département d’informatiqueUniversité du Québec à RimouskiRimouskiCanada
  2. 2.Department of Software and IT EngineeringÉcole de Technologie SupérieureMontrealCanada

Personalised recommendations