Multimedia Tools and Applications

, Volume 70, Issue 1, pp 433–460 | Cite as

A web-based platform for biosignal visualization and annotation

  • André LourençoEmail author
  • Hugo Plácido da Silva
  • Carlos Carreiras
  • Ana Priscila Alves
  • Ana L. N. Fred


With the advent of wearable sensing and mobile technologies, biosignals have seen an increasingly growing number of application areas, leading to the collection of large volumes of data. One of the difficulties in dealing with these data sets, and in the development of automated machine learning systems which use them as input, is the lack of reliable ground truth information. In this paper we present a new web-based platform for visualization, retrieval and annotation of biosignals by non-technical users, aimed at improving the process of ground truth collection for biomedical applications. Moreover, a novel extendable and scalable data representation model and persistency framework is presented. The results of the experimental evaluation with possible users has further confirmed the potential of the presented framework.


Ground truth Annotation Biosignals Data representation Multimodal Metadata 



This work was partially funded by Fundação para a Ciência e Tecnologia (FCT) under the grants PTDC/EIA-CCO/103230/2008, SFRH/BD/65248/2009 and SFRH/PROTEC/49512/2009, by the Instituto de Telecomunicações under the grant “Android Biometric System” and by Área Departamental de Engenharia de Electrónica e Telecomunicações e de Computadores - ISEL, whose support the authors gratefully acknowledge.


  1. 1.
    Adidas: miCoach heart rate monitor. Accessed Jan 2013
  2. 2.
    AliveCor: iPhone ECG accessory. Accessed Jan 2013
  3. 3.
    Anderson JC, Lehnardt J, Slater N (2010) CouchDB: the definitive guide time to relax, 1st edn. Reilly Media, Inc (2010)Google Scholar
  4. 4.
    Bangor A, Kortum T, Miller J (2008) An empirical evaluation of the system usability scale. Int J Hum Comput Interact 24(6):574–594CrossRefGoogle Scholar
  5. 5.
    Borsci S, Federici S, Lauriola M (2009) On the dimensionality of the system usability scale: a test of alternative measurement models. Cogn Process 10:193–197CrossRefGoogle Scholar
  6. 6.
    Brooke J (1996) Sus: a quick and dirty usability scale. In: Jordan PW, Thomas B, Weerdmeester BA, McClelland IL (eds) Usability evaluation in industry. Taylor & Francis, London (1996)Google Scholar
  7. 7.
    Brooks D (2009) Extensible biosignal metadata a model for physiological time-series data. In: Annual international conference of the IEEE eng. in medicine and biology society, 2009. EMBC 2009, pp 3881–3884Google Scholar
  8. 8.
    Brooks D, Hunter P, Smaill B, Titchener M (2011) BiosignalML - a meta-model for biosignals. In: Annual international conference of the IEEE eng. in medicine and biology society, EMBC, 2011, pp 5670–5673Google Scholar
  9. 9.
    Chang HH, Moura JMF (2009) Biomedical engineering and design handbook. In: Biomedical signal processing. McGraw-Hill, New YorkGoogle Scholar
  10. 10.
    Chang F, Dean J, Ghemawat S, Hsieh WC, Wallach DA, Burrows M, Chandra T, Fikes A, Gruber RE (2008) Bigtable: a distributed storage system for structured data. ACM Trans Comput Syst 26(2):4:1–4:26CrossRefGoogle Scholar
  11. 11.
    Chodorow K, Dirolf M (2010) MongoDB: the definitive guide. O’Reilly MediaGoogle Scholar
  12. 12.
    Clarys JP, Cabri J (1993) Electromyography and the study of sports movements: a review. J Sports Sci 11:379–448CrossRefGoogle Scholar
  13. 13.
    Crockford D (2006) The application/json media type for JavaScript Object Notation (JSON). Network working group. Accessed Jan 2013
  14. 14.
    Dean J, Ghemawat S (2004) Mapreduce: simplified data processing on large clusters. In: Proceedings of the 6th conference on symposium on opearting systems design & implementation, OSDI’04, vol 6. USENIX Association, Berkeley, CA, USA, pp 10–10.
  15. 15.
    Engelse W, Zeelenberg C (1979) A single scan algorithm for QRS detection and feature extraction. In: IEEE comp in card, pp 37–42Google Scholar
  16. 16.
    EPI Mobile Solutions. EPI life: a doctor in your pocket. Accessed Jan 2013
  17. 17.
    Fensli R, Gunnarson E, Gundersen T (2005) A wearable ecg-recording system for continuos arryhytmia moritoring in a wireless tele-home-care situation. In: 18th Int symposium on computer-based medical systemGoogle Scholar
  18. 18.
    Freivalds A (2011) Biomechanics of the upper limbs: mechanics, modeling and musculoskeletal injuries, 2nd edn. CRC Press, Boca RatonGoogle Scholar
  19. 19.
    Goldberger A, Amaral L, Glass L, Hausdorff J, Ivanov P, Mark R, Mietus J, Moody G, Peng CK, Stanley H (200) Physiobank, physiotoolkit, and physionet: components of a new research resource for complex physiologic signals. Circulation 23(101):215–220Google Scholar
  20. 20.
    Hellmann G, Kuhn M, Prosch M, Spreng M (1996) Extensible biosignal (EBS) file format: simple method for EEG data exchange. Electroencephalogr Clin Neurophysiol 99(5):426–431CrossRefGoogle Scholar
  21. 21.
    Kemp B, Olivan J (2003) European data format plus (EDF+), an EDF alike standard format for the exchange of physiological data. Clin Neurophysiol 114(9):1755–1761CrossRefGoogle Scholar
  22. 22.
    Lourenço A, Silva H, Lourenço R, Leite P, Fred ALN (2012) Realtime electrocardiogram segmentation for finger based ECG biometrics. In: Proc int. conf. on bio-inspired systems and signal processingGoogle Scholar
  23. 23.
    Magrabi F, Lovell N, BG C (1999) A web-based approach for electrocardiogram monitoring in the home. Int J Med Inform 54(2):145–53CrossRefGoogle Scholar
  24. 24.
    McGuinness DL (2003) Ontologies come of age. Spinning the semantic web: bringing the world wide web to its full potential. Accessed Jan 2013
  25. 25.
    MFER. Accessed Jan 2013
  26. 26.
    Moody G, Mark R, Goldberger A (2001) Physionet: a web-based resource for the study of physiologic signals. IEEE Eng Med Biol Mag 20(3):70–75CrossRefGoogle Scholar
  27. 27.
    Preece J, Rogers Y, Sharp H (2002) Interaction design: beyond human-computer interaction. Wiley, IndianapolisGoogle Scholar
  28. 28.
    Russell B, Torralba A, Murphy K, Freeman W (2008) LabelMe: a database and web-based tool for image annotation. Int J Comput Vis 77:157–173CrossRefGoogle Scholar
  29. 29.
    Schwartz M, Andrasik F (2005) Biofeedback: a practitioner’s guide, 3rd edn. Guilford Press, New YorkGoogle Scholar
  30. 30.
    Shimada T, Shiina T, Saito Y (2000) Detection of characteristic waves of sleep eeg by neural network analysis. IEEE Trans Biomed Eng 47(3):369–379. doi: 10.1109/10.827301 CrossRefGoogle Scholar
  31. 31.
    Silva H, Fred ALN, Lourenço A (2011) Check your biosignals here: experiments on affective computing and behavioral biometrics. In: Proc Portuguese conf. on pattern recognition - RecPadGoogle Scholar
  32. 32.
    Silva M, Guerreiro T, Gonçalves D, Silva H A (2012) Web-based application to address individual interests of children with autism spectrum disorders. Procedia Computer ScienceGoogle Scholar
  33. 33.
    Sorokin A, Forsyth D (2008) Utility data annotation with amazon mechanical turk. In: IEEE computer society conference on computer vision and pattern recognition workshops, CVPRW ’08, pp 1–8Google Scholar
  34. 34.
    Stanford V (2004) Biosignals offer potential for direct interfaces and health monitoring. IEEE Pervasive Comput 3(1):99–103CrossRefGoogle Scholar
  35. 35.
    Strauch C (2011) NoSQL databases. Tech. rep., Stuttgart Media University. Accessed Jan 2013
  36. 36.
    The HDF Group (2010) Hierarchical data format version 5, 2000–2010. Accessed Jan 2013

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • André Lourenço
    • 1
    • 2
    Email author
  • Hugo Plácido da Silva
    • 2
    • 3
  • Carlos Carreiras
    • 2
  • Ana Priscila Alves
    • 2
  • Ana L. N. Fred
    • 2
    • 3
  1. 1.Instituto Superior de Engenharia de Lisboa (ISEL)LisboaPortugal
  2. 2.Instituto de Telecomunicações (IT)LisboaPortugal
  3. 3.Instituto Superior Técnico (IST)LisboaPortugal

Personalised recommendations