Multimedia Tools and Applications

, Volume 72, Issue 1, pp 417–435 | Cite as

High capacity reversible hiding scheme based on interpolation, difference expansion, and histogram shifting

  • Tzu-Chuen Lu
  • Chin-Chen ChangEmail author
  • Ying-Hsuan Huang


Difference expansion and histogram shifting methods are two popular hiding strategies that have been widely used in many researches. For example, Hong and Chen developed a reversible hiding method based on interpolation and histogram shifting. The image quality of their scheme is exceptional; however, their scheme needs to keep and transmit two peak points for secret data extraction and pixel recovering. Moreover, the reference pixels in their scheme cannot be used to embed secret data that will decrease the hiding capacity. Therefore, this paper shall propose a reversible hiding method to enhance their scheme. The proposed method applies the difference expansion, histogram shifting and interpolation strategies to conceal secret data in the reference pixels for increasing the hiding payload. Experimental results indicate that the proposed method performs better in terms of hiding capacity than recently developed methods.


Reversible hiding Difference expansion Histogram shifting Interpolation 


  1. 1.
    Alattar AM (2004) Reversible watermark using the difference expansion of a generalized integer transform. IEEE Trans Image Process 13(8):1147–1156CrossRefMathSciNetGoogle Scholar
  2. 2.
    Awrangjeb M, Kankanhalli MS (2005) Reversible watermarking using a perceptual model. J Electron Imaging 14(1):1–8CrossRefGoogle Scholar
  3. 3.
    Berson TA (1993) Differential cryptanalysis mod 232 with applications to MD5. Advances in Cryptology — EUROCRYPT’ 92 658:71–80Google Scholar
  4. 4.
    Celik MU, Sharma G, Tekalp AM, Saber E (2005) Lossless generalized-LSB data embedding. IEEE Trans Image Process 14(2):253–266CrossRefGoogle Scholar
  5. 5.
    Chan YK, Chen WT, Yu SS, Ho YA, Tsai CS, Chu YP (2009) A HDWT-based reversible data hiding method. J Syst Softw 82(3):411–421CrossRefGoogle Scholar
  6. 6.
    Chan CK, Cheng LM (2004) Hiding data in images by simple LSB substitution. Pattern Recogn 37(3):469–474CrossRefzbMATHGoogle Scholar
  7. 7.
    Chang CC, Huang YH, Tsai HY, Qin C (2012) Prediction-based reversible data hiding using the difference of neighboring pixels. Int J Electron Commun (AEÜ) 66(9):758–766CrossRefGoogle Scholar
  8. 8.
    Chu YH, Chang S (1999) Dynamical cryptography based on synchronized chaotic systems. IEE Electron Lett 35(12):974–975CrossRefGoogle Scholar
  9. 9.
    Highland HJ (1997) Data encryption: a non-mathematical approach. Comput Secur 16(5):369–386CrossRefGoogle Scholar
  10. 10.
    Hong W, Chen TS (2011) Reversible data embedding for high quality images using interpolation and reference pixel distribution mechanism. J Vis Commun Image Represent 22(2):131–140CrossRefMathSciNetGoogle Scholar
  11. 11.
    Hu Y, Lee HK, Li J (2009) DE-based reversible data hiding with improved overflow location map. IEEE Trans Circ Syst Video Technol 19(2):250–260CrossRefGoogle Scholar
  12. 12.
    Kieu TD, Chang CC (2011) A steganographic scheme by fully exploiting modification directions. Expert Syst Appl 38:10648–10657CrossRefGoogle Scholar
  13. 13.
    Lee CF, Chen HL, Tso HK (2010) Embedding capacity raising in reversible data hiding based on prediction of difference expansion. J Syst Softw 83(10):1864–1872CrossRefGoogle Scholar
  14. 14.
    Li YC, Yeh CM, Chang CC (2009) Data hiding based on the similarity between neighboring pixels with reversibility. Digit Signal Proc 20(4):1116–1128CrossRefGoogle Scholar
  15. 15.
    Lin CC (2011) An information hiding scheme with minimal image distortion. Comput Stand Interfaces 33(5):477–484CrossRefGoogle Scholar
  16. 16.
    Liu YC, Wu HC, Yu SS (2011) Adaptive DE-based reversible steganographic technique using bilinear interpolation and simplified location map. Multimed Tools Appl 52(2–3):263–276CrossRefGoogle Scholar
  17. 17.
    Ni Z, Shi YQ, Ansari N, Su W (2006) Reversible data hiding. IEEE Trans Circ Syst Video Technol 16(3):354–362CrossRefGoogle Scholar
  18. 18.
    Petitcolas FAP, Anderson RJ, Kuhn MG (1999) Information hiding - a survey. Proc IEEE 87(7):1062–1078CrossRefGoogle Scholar
  19. 19.
    Qin C, Wang S, Zhang X (2012) Simultaneous inpainting for image structure and texture using anisotropic heat transfer model. Multimed Tools Appl 56(3):469–483CrossRefGoogle Scholar
  20. 20.
    Tai WL, Yeh CM, Chang CC (2009) Reversible data hiding based on histogram modification of pixel differences. IEEE Trans Circ Syst Video Technol 19(6):906–910CrossRefGoogle Scholar
  21. 21.
    Thodi DM, Rodriguez JJ (2004) Prediction-error based reversible watermarking. Proc 2004 Int Conf Image Process 3:1549–1552Google Scholar
  22. 22.
    Thodi DM, Rodriguez JJ (2007) Expansion embedding techniques for reversible watermarking. IEEE Trans Image Process 16(3):721–730CrossRefMathSciNetGoogle Scholar
  23. 23.
    Tian J (2011) Reversible data embedding using a difference expansion. IEEE Trans Circ Syst Video Technol 13(8):890–896CrossRefGoogle Scholar
  24. 24.
    Tsai P, Hu YC, Yeh HL (2009) Reversible image hiding scheme using predictive coding and histogram shifting. Signal Process 89(6):1129–1143CrossRefzbMATHGoogle Scholar
  25. 25.
    Tseng HW, Hsieh CP (2009) Prediction-based reversible data hiding. Inform Sci 179(14):2460–2469CrossRefzbMATHGoogle Scholar
  26. 26.
    Wu HT, Huang J (2012) Reversible image watermarking on prediction errors by efficient histogram modification. Signal Process 92(12):3000–3009CrossRefGoogle Scholar
  27. 27.
    Yang CY, Hu WC (2011) High-performance reversible data hiding with overflow/underflow avoidance. ETRI J 33(4):580–588CrossRefGoogle Scholar
  28. 28.
    Yang HW, Hwang KF, Liao IE (2009) Reversible data hiding based on interleaving max-min difference histogram. Proceedings of the 2009 Joint Conferences on Pervasive Computing 823–828. doi:  10.1109/JCPC.2009.5420071
  29. 29.
    Yang CH, Weng CY, Tso HK, Wang SJ (2011) A data hiding scheme using the varieties of pixel-value differencing in multimedia images. J Syst Softw 84(4):669–678CrossRefGoogle Scholar
  30. 30.
    Zhang X, Wang S (2006) Efficient steganographic embedding by exploiting modification direction. IEEE Commun Lett 10(11):781–783CrossRefGoogle Scholar
  31. 31.
    Zhao ZF, Luo H, Lu ZM, Pan JS (2011) Reversible data hiding based on multilevel histogram modification and sequential recovery. Int J Electron Commun (AEÜ) 65(10):814–826CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Tzu-Chuen Lu
    • 1
  • Chin-Chen Chang
    • 2
    • 3
    Email author
  • Ying-Hsuan Huang
    • 4
  1. 1.Department of Information ManagementChaoyang University of TechnologyTaichungTaiwan, Republic of China
  2. 2.Department of Information Engineering and Computer ScienceFeng Chia UniversityTaichungTaiwan, Republic of China
  3. 3.Department of Computer Science and Information EngineeringAsia UniversityTaichungTaiwan, Republic of China
  4. 4.Department of Computer Science and EngineeringNational Chung Hsing UniversityTaichungTaiwan, Republic of China

Personalised recommendations