Multimedia Tools and Applications

, Volume 72, Issue 1, pp 385–415 | Cite as

Synthetic content generation for auto-stereoscopic displays

  • Carlos González
  • José Martínez Sotoca
  • Filiberto Pla
  • Miguel Chover


Due to the appearance of auto-stereoscopic visualization as one of the most emerging tendencies used in displays, new content generation techniques for this kind of visualization are required. In this paper we present a study for the generation of multi-view synthetic content, studying several camera setups (planar, cylindrical and hyperbolic) and their configurations. We discuss the different effects obtained varying the parameters of these setups. A study with several users was made to analyze visual perceptions, asking them for their optimal visualization. To create the virtual content, a multi-view system has been integrated in a powerful game engine, which allows us to use the latest graphics hardware advances. This integration is detailed and several demos and videos are attached with this paper, which represent a virtual world for auto-stereoscopic displays and the same scenario in a two-view anaglyph representation for being visualized in any conventional display. In all these demos, the parameters studied can be modified offering the possibility of easily appreciate their effects in a virtual scene.


Auto-stereoscopic displays Virtual reality Interactive visualization Multimedia applications 



This work has been supported by the Spanish Ministry of Education and Science (TIN2009-14103-C03-01), Caja Castellón-Bancaja Foundation (P1.1B2009-45), Generalitat Valenciana (Project PROMETEO/2010/028, BEST/2011) and Consolider Ingenio 2010 (CSD2007-00018).


  1. 1.
    Cheng X (2007) Generation of layered depth images from multi-view video. In: IEEE international conference on image processing (ICIP ’07), pp 225–228Google Scholar
  2. 2.
    Chen H-J, Lo, F-H, Jan F-C, Wu S-D (2010) Real-time multi-view rendering architecture for autostereoscopic displays. In: Proc. of 2010 IEEE international symposium on circuits and systems (ISCAS), pp 1165–1168Google Scholar
  3. 3.
    DeCoro C, Tatarchuk N (2007) Real-time mesh simplification using the GPU. In: Proceedings of the 2007 symposium on interactive 3D graphics and games (I3D ’07), pp 161–166Google Scholar
  4. 4.
    Dogson N A (2002) Analysis of the viewing zone of multi-view autostereoscopic displays. In: Proc. of SPIE symposium on stereoscopic displays and applications XIII, pp 254–265Google Scholar
  5. 5.
    Fehn C (2003) A 3D-TV approach using depth-image-based rendering (DIBR). In: Proc. VIIP 03. Benalmadena, Spain (2003)Google Scholar
  6. 6.
    Friedmann M (1937) The use of ranks to avoid the assumption of normality implicit in the analysis of variance. J Am Stat Assoc 32(200):675–701CrossRefGoogle Scholar
  7. 7.
    Fu H, Yao S-J, Li D-X, Wang L-H, Zhang M (2012) A real-time multi-view interlacing architecture for auto-stereoscopic 3DTV display based on FPGA. In: 2nd international conference on consumer electronics, communications and networks, pp 1569–1572Google Scholar
  8. 8.
    Gortler S J, Grzeszczuk R, Szeliski R, Cohen M F (1996) The lumigraph. In: SIGGRAPH’96, pp 43–54Google Scholar
  9. 9.
    Gumbau J, González C, Chover M (2008) GPU-based normal map generation. In: International conference on computer graphics theory and applications (GRAPP ’08), pp 62–67Google Scholar
  10. 10.
    Gumbau J, Chover M, Sbert M (2010) Screen space soft shadows. In: GPU pro, chapter 4, part VIIGoogle Scholar
  11. 11.
    Hubner T, Pajarola R (2007) Single-pass multi-view volume rendering. In: IADIS, pp 50–58Google Scholar
  12. 12.
    Jarvenpaa T, Salmimaa M (2008) Optical characterization of autostereoscopic 3-D displays. J Soc Inf Displ 16(8):825–833CrossRefGoogle Scholar
  13. 13.
    Jin Z X, Zhang Y J, Wang X, Plocher T (2007) Evaluating the usability of an auto-stereoscopic display. In: Proceedings of the 12th international conference on Human-computer interaction: interaction platforms and techniques (HCI ’07), pp 605–614Google Scholar
  14. 14.
    Juan M C, Pérez D (2010) Using augmented and virtual reality for the development of acrophobic scenarios. Comparison of the levels of presence and anxiety. Comput Graph 34(6):756–766CrossRefGoogle Scholar
  15. 15.
    Lambooij M, Ijsselsteijn W, Fourtin M, Heynderickx I (2009) Visual discomfort and visual fatigue of stereoscopic displays: a review. J Imag Sci Tech 53(3):030201-1–030201-14CrossRefGoogle Scholar
  16. 16.
    Levoy M, Hanrahan P (1996) Light field rendering. In: SIGGRAPH ’96 Proceedings of the 23rd annual conference on computer graphics and interactive techniques, pp 31–42Google Scholar
  17. 17.
    Luo J, Qin K, Zhou Y, Mao M, Li R (2010) GPU-based multi-view rendering for spatial-multiplex autostereoscopic displays. In: 3rd IEEE international conference, pp 28–32Google Scholar
  18. 18.
    Luo J, Qin K, Zhou Y, Mao M (2010) GPU rendering for tiled multi-projector autostereoscopic display based on chromium. Vis Comput 26:457–465CrossRefGoogle Scholar
  19. 19.
    Marbach J (2009) GPU acceleration of stereoscopic and multi-view rendering for virtual reality applications. In: 16th ACM symposium on virtual reality software and technology, pp 103–110Google Scholar
  20. 20.
    Matusik W, Pfister H (2004) 3D tv: a scalable system for real-time acquisition, transmission, and autostereoscopic display of dynamic scenes. ACM Trans Graph 23(3):814–824CrossRefGoogle Scholar
  21. 21.
    Mendiburu B (2009) 3D movie making: stereoscopic digital camera from script to screen. Elsevier, New YorkGoogle Scholar
  22. 22.
    Miksícek F (2006) Causes of visual fatigue and its improvements in stereoscopy. University of West Bohemia in Pilsen. Technical Report No. DCSE/TR-2006-04Google Scholar
  23. 23.
    Okoshi T (2010) Three dimensional imaging techniques, 2nd edn. Atara PressGoogle Scholar
  24. 24.
    Park J, Lee B, Hong H, Shin H (2006) Autostereoscopic multi-view 3D system using square subpixel structure. In: International display workshop, pp 1365–1366Google Scholar
  25. 25.
    Reiter D, Chen B (2007) LightShop: interactive light field manipulation and rendering. In: Proceedings of SI3D ’07, pp 121–128Google Scholar
  26. 26.
    Salmimaa M, Järvenpää (2008) Objective evaluation of multi-view autostereoscopic 3D displays. SID Symp Dig Tech Pap 39(1):267–270CrossRefGoogle Scholar
  27. 27.
    Saygili G, Gurler G, Tekalp A M (2009) 3D display-dependent quality evaluation and rate allocation using scalable video coding. In: IEEE international conference on image processing (ICIP), pp 717–720Google Scholar
  28. 28.
    Shum H-Y, Chan S-C, Kang S B (2007) Image-based rendering. Springer, New YorkGoogle Scholar
  29. 29.
    Son J Y, Saveljev V, Kim J-S, Kim S-S, Javidi B (2004) Viewing zones in three-dimensional imaging systems based on lenticular. Appl Opt 43(26):4985–4992Google Scholar
  30. 30.
    Sorbier F, Nozick V, Biri V (2008) GPU rendering for autostereoscopic displays. In: 4th international symposium on 3D data processing, visualization and transmission (3DPVT’08)Google Scholar
  31. 31.
    Sorbier F, Nozick V, Biri V (2008) Accelerated stereoscopic rendering using GPU. In: The 16th international conference in central europe on computer graphics, visualization and computer vision (WSCG’2008)Google Scholar
  32. 32.
    Stendel D (2009) Autostereoscopic visualization of landscape—a research project. In: Screnk M, Popovich V V, Engelke D, Elisei P (eds) Coorp 2009—Competence Center for Urban and Regional Development. Sitges. TU WienGoogle Scholar
  33. 33.
    Strecha C, Von Hansen C, Gool L V, Fua P, Thoennessen U (2008) On benchmarking camera calibration and multi-view stereo for high resolution imagery. In: IEEE conference on computer vision and pattern recognition, pp 1–8Google Scholar
  34. 34.
    Van Berkel C (1999) Image preparation for 3D-LCD. In: Proceedings of SPIE, vol 3639, pp 84–91Google Scholar
  35. 35.
    UNITY Game development tool (2012).
  36. 36.
    xyZ 3D Displays. Autostereoscopic 3D TV (2012).
  37. 37.
    Zhang L, Tam W J (2005) Stereoscopic image generation based on depth images for 3D TV. IEEE Trans Broadcast 51(2):191–199CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Carlos González
    • 1
  • José Martínez Sotoca
    • 1
  • Filiberto Pla
    • 1
  • Miguel Chover
    • 1
  1. 1.Institute of New Imaging TechnologiesUniversitat Jaume ICastellónSpain

Personalised recommendations