Advertisement

Multimedia Tools and Applications

, Volume 69, Issue 2, pp 539–567 | Cite as

Retrieval of high-dimensional visual data: current state, trends and challenges ahead

  • Antonio Foncubierta-Rodríguez
  • Henning Müller
  • Adrien Depeursinge
Article

Abstract

Information retrieval algorithms have changed the way we manage and use various data sources, such as images, music or multimedia collections. First, free text information of documents from varying sources became accessible in addition to structured data in databases, initially for exact search and then for more probabilistic models. Novel approaches enable content-based visual search of images using computerized image analysis making visual image content searchable without requiring high quality manual annotations. Other multimedia data followed such as video and music retrieval, sometimes based on techniques such as extracting objects and classifying genre. 3D (surface) objects and solid textures have also been produced in quickly increasing quantities, for example in medical tomographic imaging. For these two types of 3D information sources, systems have become available to characterize the objects or textures and search for similar visual content in large databases. With 3D moving sequences (i.e., 4D), in particular medical imaging, even higher-dimensional data have become available for analysis and retrieval and currently present many multimedia retrieval challenges.

This article systematically reviews current techniques in various fields of 3D and 4D visual information retrieval and analyses the currently dominating application areas. The employed techniques are analysed and regrouped to highlight similarities and complementarities among them in order to guide the choice of optimal approaches for new 3D and 4D retrieval problems. Opportunities for future applications conclude the article. 3D or higher-dimensional visual information retrieval is expected to grow quickly in the coming years and in this respect this article can serve as a basis for designing new applications.

Keywords

3-dimensional objects Visual information retrieval 3D retrieval 4D retrieval High-dimensional objects 

Notes

Acknowledgements

This work was partially supported by the Swiss National Science Foundation (FNS) in the MANY project (grant 205321–130046), the EU 7th Framework Program in the context of the Khresmoi project (FP7–257528), and the Center for Biomedical Imaging (CIBM).

References

  1. 1.
    Ahmed MN, Farag AA (1996) 3D segmentation and labeling using self-organizing Kohonen network for volumetric measurements on brain CT imaging to quantify TBI recovery. In: Proceedings of the 18th annual international conference of the IEEE engineering in medicine and biology society, EMBS 1996, vol 2. Bridging Disciplines for Biomedicine, pp 738–739Google Scholar
  2. 2.
    Akbari H, Yang X, Halig LV, Fei B (2011) 3D segmentation of prostate ultrasound images using wavelet transform. In: Medical imaging 2011: image processing, vol 7962. SPIE, p 79622KGoogle Scholar
  3. 3.
    Akgül C, Rubin D, Napel S, Beaulieu C, Greenspan H, Acar B (2011) Content-based image retrieval in radiology: current status and future directions. J Digit Imaging 24(2):208–222CrossRefGoogle Scholar
  4. 4.
    Amir A, Basu S, Iyengar G, Lin CY, Naphade M, Smith JR, Srinivasan S, Tseng B (2004) A multi-modal system for the retrieval of semantic video events. Comput Vis Image Underst 96(2):216–236CrossRefGoogle Scholar
  5. 5.
    Amir A, Berg M, Chang SF, Hsu W, Iyengar G, Lin CY, Naphade M, Natsev A, Neti C, Nock HJ, Smith JR, Tseng B, Wu Y, Zhang D (2003) IBM research TRECVID-2003 video retrieval system. In: Proceedings of the TRECVID 2003 conferenceGoogle Scholar
  6. 6.
    Andriole KP, Wolfe JM, Khorasani R (2011) Optimizing analysis, visualization and navigation of large image data sets: one 5000–section CT scan can ruin your whole day. Radiology 259(2):346–362CrossRefGoogle Scholar
  7. 7.
    Ankerst M, Kastenmüller G, Kriegel HP, Seidl T (1999) 3D shape histograms for similarity search and classification in spatial databases. In: Güting R, Papadias D, Lochovsky F (eds) Advances in spatial databases. Lecture notes in computer science, vol 1651. Springer Berlin/Heidelberg, pp 207–226CrossRefGoogle Scholar
  8. 8.
    Ansary T, Vandeborre JP, Mahmoudi S, Daoudi M (2004) A bayesian framework for 3D models retrieval based on characteristic views. In: 3DPVT 2004 proceedings of 2nd international symposium on 3D data processing, visualization and transmission, 2004, pp 139–146Google Scholar
  9. 9.
    Antel SB, Collins DL, Bernasconi N, Andermann F, Shinghal R, Kearney RE, Arnold DL, Bernasconi A (2003) Automated detection of focal cortical dysplasia lesions using computational models of their MRI characteristics and texture analysis. NeuroImage 19(4):1748–1759CrossRefGoogle Scholar
  10. 10.
    Assfalg J, Bertini M, Bimbo A, Pala P (2007) Content-based retrieval of 3D objects using spin image signatures. IEEE Trans Multimedia 9(3):589–599CrossRefGoogle Scholar
  11. 11.
    Baum KG, Helguera M, Krol A (2008) Fusion viewer: a new tool for fusion and visualization of multimodal medical data sets. J Digit Imaging 21(1):S59–S68Google Scholar
  12. 12.
    Benedens O, Busch C (2000) Towards blind detection of robust watermarks in polygonal models. Comput Graph Forum 19(3):199–208CrossRefGoogle Scholar
  13. 13.
    Bennett WR, Davey JR (1965) Data transmission. McGraw-HillGoogle Scholar
  14. 14.
    Bhalerao A, Reyes-Aldasoro C (2003) Volumetric texture description and discriminant feature selection for MRI. In: Moreno-Díaz R, Pichler F (eds) Computer aided systems theory—EUROCAST 2003. Lecture notes in computer science (LNCS), vol 2809. Springer Berlin/Heidelberg, pp 573–584CrossRefGoogle Scholar
  15. 15.
    Bustos B, Keim DA, Saupe D, Schreck T, Vranic DV (2005) Feature-based similarity search in 3D object databases. ACM Comput Surv 37(4):345–387CrossRefGoogle Scholar
  16. 16.
    Cai W, Liu S, Wen L, Eberl S, Fulham MJ, Feng D (2010) 3D neurological image retrieval with localized pathology-centric CMRGlc patterns. In: 17th IEEE international conference on image processing, ICIP 2010, pp 3201–3204Google Scholar
  17. 17.
    Chang KI, Bowyer KW, Flynn PJ (2006) Multiple nose region matching for 3D face recognition under varying facial expression. IEEE Trans Pattern Anal Mach Intell 28(10):1695–1700CrossRefGoogle Scholar
  18. 18.
    Chen DY, Tian XP, Shen YT, Ouhyoung M (2003) On visual similarity based 3D model retrieval. Comput Graph Forum 22(3):223–232CrossRefGoogle Scholar
  19. 19.
    Chen W, Giger ML, Li H, Bick U, Newstead GM (2007) Volumetric texture analysis of breast lesions on contrast-enhanced magnetic resonance images. Magn Reson Med 58(3):562–571CrossRefGoogle Scholar
  20. 20.
    Chen X, Murphy RF (2004) Robust classification of subcellular location patterns in high resolution 3D fluorescence microscope images. In: 26th annual international conference of the IEEE engineering in medicine and biology society, EMBC 2004, vol 1, pp 1632–1635Google Scholar
  21. 21.
    Chen Y, Zhou XS, Huang T (2001) One-class svm for learning in image retrieval. In: Proceedings of 2001 international conference on image processing, vol 1, pp 34–37Google Scholar
  22. 22.
    Cheng PC, Yeh JY, Ke HR, Chien BC, Yang WP (2004) NCTU–ISU’s evaluation for the user-centered search task at ImageCLEF 2004. In: Working notes of the 2004 CLEF workshop. Bath, EnglandGoogle Scholar
  23. 23.
    Cheung CP, Godil A (2010) A shape-based searching system for industrial components. In: Proceedings of the 15th international conference on web 3D technology, web 3D ’10. ACM, pp 151–156Google Scholar
  24. 24.
    Chua CS, Han F, Ho YK (2000) 3D human face recognition using point signature. In: Proceedings of 4th IEEE international conference on automatic face and gesture recognition, 2000, pp 233–238Google Scholar
  25. 25.
    Chua CS, Jarvis R (1997) Point signatures: a new representation for 3D object recognition. Int J Comput Vis 25:63–85CrossRefGoogle Scholar
  26. 26.
    Cicirello V, Regli W (2001) Machining feature-based comparisons of mechanical parts. In: SMI 2001 international conference on shape modeling and applications, pp 176–185Google Scholar
  27. 27.
    Cooke E, Ferguson P, Gaughan G, Gurrin C, Jones GJF, Le H, Lee H, Marlow S, Donald KM, Mchugh M, Murphy NEN, Rothwell R, Smeaton AF, Wilkins P (2004) Trecvid 2004 experiments in dublin city university. In: Proceedings of the TRECVID 2004 conferenceGoogle Scholar
  28. 28.
    Datta R, Joshi D, Li J, Wang JZ (2008) Image retrieval: ideas, influences, and trends of the new age. ACM Comput Surv 40(2):1–60CrossRefGoogle Scholar
  29. 29.
    de Alarcón P, Pascual-Montano A, Carazo J (2002) Spin images and neural networks for efficient content-based retrieval in 3D object databases. In: Lew M, Sebe N, Eakins J (eds) Image and video retrieval. Lecture notes in computer science, vol 2383. Springer Berlin/Heidelberg, pp 225–234CrossRefGoogle Scholar
  30. 30.
    Depeursinge A, Foncubierta-Rodríguez A, Van De Ville D, Müller H (2011) Lung texture classification using locally-oriented riesz components. In: Fichtinger G, Martel A, Peters T (eds) Medical image computing and computer assisted intervention—MICCAI 2011. Lecture notes in computer science, vol. 6893. Springer Berlin/Heidelberg, pp 231–238CrossRefGoogle Scholar
  31. 31.
    Depeursinge A, Müller H (2010) Fusion techniques for combining textual and visual information retrieval. In: Müller H, Clough P, Deselaers T, Caputo B (eds) ImageCLEF, the springer international series on information retrieval, vol 32. Springer Berlin Heidelberg, pp 95–114Google Scholar
  32. 32.
    Depeursinge A, Müller H (2010) Sensors, medical images and signal processing: comprehensive multi–modal diagnosis aid frameworks. IMIA Yearb Med Inform 5(1):43–46Google Scholar
  33. 33.
    Depeursinge A, Racoceanu D, Iavindrasana J, Cohen G, Platon A, Poletti PA, Müller H (2010) Fusing visual and clinical information for lung tissue classification in high-resolution computed tomography. Artif Intell Med 50(1):13–21CrossRefGoogle Scholar
  34. 34.
    Depeursinge A, Vargas A, Gaillard F, Platon A, Geissbuhler A, Poletti PA, Müller H (2012) Case-based lung image categorization and retrieval for interstitial lung diseases: clinical workflows. Int J CARS 7(1):97–110CrossRefGoogle Scholar
  35. 35.
    Depeursinge A, Zrimec T, Busayarat S, Müller H (2011) 3D lung image retrieval using localized features. In: Medical imaging 2011. Computer-aided diagnosis, vol 7963. SPIE, p 79632EGoogle Scholar
  36. 36.
    Deselaers T, Weyand T, Ney H (2006) Image retrieval and annotation using maximum entropy. In: Working notes of the 2006 CLEF Workshop. Alicante, SpainGoogle Scholar
  37. 37.
    Dinh H, Kropac S (2006) Multi-resolution spin-images. In: IEEE computer society conference on computer vision and pattern recognition, 2006, vol 1, pp 863–870Google Scholar
  38. 38.
    Do MN, Vetterli M (2002) Rotation invariant texture characterization and retrieval using steerable wavelet-domain hidden markov models. IEEE Trans Multimedia 4(4):517–527CrossRefGoogle Scholar
  39. 39.
    Donald K, Smeaton A (2005) A comparison of score, rank and probability-based fusion methods for video shot retrieval. In: Leow WK, Lew M, Chua TS, Ma WY, Chaisorn L, Bakker E (eds) Image and video retrieval. Lecture notes in computer science, vol 3568. Springer Berlin/Heidelberg, pp 592–592CrossRefGoogle Scholar
  40. 40.
    El-Baz A, Casanova M, Gimel’farb G, Mott M, Switala A, Vanbogaert E, McCracken R (2008) Dyslexia diagnostics by 3D texture analysis of cerebral white matter gyrifications. In: 19th international conference on pattern recognition, ICPR 2008, pp 1–4Google Scholar
  41. 41.
    El-Mehalawi M, Miller RA (2003) A database system of mechanical components based on geometric and topological similarity. part ii: indexing, retrieval, matching, and similarity assessment. Computer-Aided Design 35(1):95–105CrossRefGoogle Scholar
  42. 42.
    Elad M, Tal A, Ar S (2002) Content based retrieval of vrml objects: an iterative and interactive approach. In: Proceedings of the 6th eurographics workshop on multimedia 2001. Springer-Verlag New York, Inc., New York, NY, USA, pp 107–118Google Scholar
  43. 43.
    Fatemi N, Lalmas M, Rölleke T (2004) How to retrieve multimedia documents described by MPEG-7. In: van Rijsbergen C, Ounis I, Jose J, Ding Y (eds) Semantic web and information retrievalGoogle Scholar
  44. 44.
    Fehr J (2007) Rotational invariant uniform local binary patterns for full 3D volume texture analysis. In: Finnish signal processing symposium (FINSIG), 2007. Oulu, FinlandGoogle Scholar
  45. 45.
    Fehr J, Burkhardt H (2008) 3D rotation invariant local binary patterns. In: 19th international conference on pattern recognition, ICPR 2008, pp 1–4Google Scholar
  46. 46.
    Ferecatu M, Sahbi H (2008) TELECOM ParisTech at ImageClefphoto 2008: Bi–modal text and image retrieval with diversity enhancement. In: Working notes of the 2008 CLEF workshop. Aarhus, DenmarkGoogle Scholar
  47. 47.
    Flickner M, Sawhney H, Niblack W, Ashley J, Huang Q, Dom B, Gorkani M, Hafner J, Lee D, Petkovic D, Steele, D, Yanker P (1995) Query by Image and Video Content: the QBIC system. IEEE Computer 28(9):23–32CrossRefGoogle Scholar
  48. 48.
    Foncubierta-Rodríguez A, Depeursinge A, Müller H (2012) Using multiscale visual words for lung texture classification and retrieval. In: Greenspan H, Müller H, Syeda Mahmood T (eds) Medical content-based retrieval for clinical decision support, MCBR-CDS 2011, vol 7075. Lecture notes in computer sciences (LNCS), pp 69–79Google Scholar
  49. 49.
    François R, Fablet R, Barillot C (2003) Robust statistical registration of 3D ultrasound images using texture information. In: Proceedings of the international conference on image processing, 2003. ICIP 2003, vol 1, pp 581–584Google Scholar
  50. 50.
    Friedrich JM (2008) Quantitative methods for three-dimensional comparison and petrographic description of chondrites. Comput Geosci 34(12):1926–1935CrossRefGoogle Scholar
  51. 51.
    Funkhouser T, Min P, Kazhdan M, Chen J, Halderman A, Dobkin D, Jacobs D (2003) A search engine for 3D models. ACM Trans Graph 22(1):83–105CrossRefGoogle Scholar
  52. 52.
    Gallo L, Pietro GD, Coronato A, Marra I (2008) Toward a natural interface to virtual medical imaging environments. In: AVI ’08: Proceedings of the working conference on advanced visual interfaces. New York, NY, USA, pp 429–432Google Scholar
  53. 53.
    Gao D (2003) Volume texture extraction for 3D seismic visualization and interpretation. Geophysics 68(4):1294–1302CrossRefGoogle Scholar
  54. 54.
    Gao D (2004) Texture model regression for effective feature discrimination: application to seismic facies visualization and interpretation. Geophysics 69(4):958–967CrossRefGoogle Scholar
  55. 55.
    Gao D (2011) Latest developments in seismic texture analysis for subsurface structure, facies, and reservoir characterization: a review. Geophysics 76(2):1–13CrossRefGoogle Scholar
  56. 56.
    Gao X, Qian Y, Hui R, Loomes M, Comley R, Barn B, Chapman A, Rix J (2010) Texture-based 3D image retrieval for medical applications. In: IADIS multi conference on computer science and information system (MCCSIS)Google Scholar
  57. 57.
    Greenspan H, Pinhas AT (2007) Medical image categorization and retrieval for pacs using the gmm-kl framework. IEEE Trans Inf Technol Biomed 11(2):190–202CrossRefGoogle Scholar
  58. 58.
    Gruhne M (2007) Mp7qf: an mpeg-7 query format. In: 3rd international conference on automated production of cross media content for multi-channel distribution, 2007. AXMEDIS ’07, pp 15–18Google Scholar
  59. 59.
    Haas M, Rijsdam J, Thomee B, Lew MS (2004) Relevance feedback: perceptual learning and retrieval in bio-computing, photos, and video. In: Proceedings of the 6th ACM SIGMM international workshop on multimedia information retrieval, MIR ’04. ACM, New York, NY, USA, pp 151–156CrossRefGoogle Scholar
  60. 60.
    Hanjalic A, Lagendijk RL, Biemond J (1997) A new method for key frame based video content representation. In: Eds. World Scientific, pp 97–107Google Scholar
  61. 61.
    Hanka R, Harte TP (1996) Curse of dimensionality: classifying large multi-dimensional images with neural networks. In: Proceedings of the European workshop on computer-intensive methods in control and signal processing (CIMCSP1996). Prague, Czech RepublicGoogle Scholar
  62. 62.
    Healy DM, Rockmore DN, Kostelec PJ, Moore SSB (2002) FFTs for the 2-Sphere—improvements and variations. In: Tech. rep. TR2002-419, Dartmouth College, Computer Science, Hanover, NHGoogle Scholar
  63. 63.
    Hilaga M, Shinagawa Y, Kohmura T, Kunii TL (2001) Topology matching for fully automatic similarity estimation of 3D shapes. In: Proceedings of the 28th annual conference on computer graphics and interactive techniques, SIGGRAPH ’01. ACM, New York, NY, USA, pp 203–212CrossRefGoogle Scholar
  64. 64.
    Huisman A, Ploeger LS, Dullens HFJ, Jonges TN, Belien JAM, Meijer GA, Poulin N, Grizzle WE, van Diest PJ (2007) Discrimination between benign and malignant prostate tissue using chromatin texture analysis in 3-D by confocal laser scanning microscopy. Prostate 67(3):248–254CrossRefGoogle Scholar
  65. 65.
    Ip CY, Lapadat D, Sieger L, Regli WC (2002) Using shape distributions to compare solid models. In: Proceedings of the 7th ACM symposium on solid modeling and applications, SMA ’02. ACM, New York, NY, USA, pp 273–280CrossRefGoogle Scholar
  66. 66.
    Isler V, Wilson B, Bajcsy R (2007) Building a 3D virtual museum of native american baskets. In: Proceedings 3rd international symposium on 3D data processing, visualization, and transmission, 3D PVT 2006, pp 954–961Google Scholar
  67. 67.
    Iyengar G, Nock HJ (2003) Discriminative model fusion for semantic concept detection and annotation in video. In: Proceedings of the 11th ACM international conference on multimedia, Multimedia ’03. ACM, New York, NY, USA, pp 255–258Google Scholar
  68. 68.
    Jafari-Khouzani K, Soltanian-Zadeh H, Elisevich K, Patel S (2004) Comparison of 2D and 3D wavelet features for TLE lateralization. In: Amini AA, Manduca A (eds) Medical imaging 2004: physiology, function, and structure from medical images, vol 5369. SPIE, pp 593–601Google Scholar
  69. 69.
    Jerram DA, Higgins MD (2007) 3D analysis of rock textures: quantifying igneous microstructures. Elements 3(4):239–245CrossRefGoogle Scholar
  70. 70.
    Julesz B (1981) Textons, the elements of texture perception, and their interactions. Nature 290(5802):91–97CrossRefGoogle Scholar
  71. 71.
    Kalpathy-Cramer J, Müller H, Bedrick S, Eggel I, García Seco de Herrera A, Tsikrika T (2011) The CLEF 2011 medical image retrieval and classification tasks. In: Working notes of CLEF 2011. Cross language evaluation forumGoogle Scholar
  72. 72.
    Ketcham RA (2005) Computational methods for quantitative analysis of three-dimensional features in geological specimens. Geosphere 1(1):32–41CrossRefGoogle Scholar
  73. 73.
    Kim J, Cai W, Feng D, Wu H (2006) A new way for multidimensional medical data management: volume of interest (voi)-based retrieval of medical images with visual and functional features. IEEE Trans Inf Technol Biomed 10(3):598–607CrossRefGoogle Scholar
  74. 74.
    Kim TY, Choi HJ, Hwang H, Choi HK (2010) Three-dimensional texture analysis of renal cell carcinoma cell nuclei for computerized automatic grading. J Med Syst 34(4):709–716CrossRefGoogle Scholar
  75. 75.
    Kim TY, Choi HK (2009) Computerized renal cell carcinoma nuclear grading using 3D textural features. In: IEEE international conference on communications workshops, 2009. ICC Workshops 2009, pp 1–5Google Scholar
  76. 76.
    Kontos D, Bakic PR, Carton AK, Troxel AB, Conant EF, Maidment ADA (2009) Parenchymal texture analysis in digital breast tomosynthesis for breast cancer risk estimation: a preliminary study. Acad Radiol 16(3):283–298CrossRefGoogle Scholar
  77. 77.
    Korfiatis PD, Kalogeropoulou C, Karahaliou AN, Kazantzi AD, Costaridou LI (2011) Vessel tree segmentation in presence of interstitial lung disease in MDCT. IEEE Trans Inf Technol Biomed 15(2):214–220CrossRefGoogle Scholar
  78. 78.
    Kotsiantis SB (2007) Supervised machine learning: a review of classification techniques. In: Proceeding of the 2007 conference on emerging artificial intelligence applications in computer engineering: real word AI systems with applications in eHealth, HCI. Information retrieval and pervasive technologies. IOS Press, Amsterdam, The Netherlands, pp 3–24Google Scholar
  79. 79.
    Kovalev VA, Kruggel F (2007) Texture anisotropy of the brain’s white matter as revealed by anatomical MRI. IEEE Trans Med Imag 26(5):678–685CrossRefGoogle Scholar
  80. 80.
    Krefting D, Bart J, Beronov K, Dzhimova OJF, Hartung MAH, Knoch TA, Lingner T, Mohammed Y, Peter K, Rahm E, Sax U, Sommerfeld D, Steinke T, Tolsdorff T, Vossberg M, Viezens F, Weisbecker A (2009) Medigrid: Towards a user friendly secured grid infrastructure. Future Gener Comput Syst 25:326–336CrossRefGoogle Scholar
  81. 81.
    Larson M, Newman E, Jones G (2009) Overview of VideoCLEF 2008: automatic generation of topic-based feeds for dual language audio-visual content. In: Peters C, Deselaers T, Ferro N, Gonzalo J, Jones G, Kurimo M, Mandl T, Peñas A, Petras V (eds) Evaluating systems for multilingual and multimodal information access. Lecture notes in computer science, vol 5706. Springer Berlin/Heidelberg, pp 906–917CrossRefGoogle Scholar
  82. 82.
    Larson M, Newman E, Jones G (2010) Overview of VideoCLEF 2009: New perspectives on speech-based multimedia content enrichment. In: Peters C, Caputo B, Gonzalo J, Jones G, Kalpathy-Cramer J, Müller H, Tsikrika T (eds) Multilingual information access evaluation II. Multimedia experiments. Lecture notes in computer science, vol 6242. Springer Berlin/Heidelberg, pp 354–368CrossRefGoogle Scholar
  83. 83.
    Lee K, Ho J, Kriegman DJ (2005) Acquiring linear subspaces for face recognition under variable lighting. IEEE Trans Pattern Anal Mach Intell 27(5):684–698CrossRefGoogle Scholar
  84. 84.
    Lienhart R (2001) Reliable transition detection in videos: a survey and practitioner’s guide. Int J Image Graph 1:469–486CrossRefGoogle Scholar
  85. 85.
    Lillis D, Toolan F, Mur A, Peng L, Collier R, Dunnion J (2006) Probability-based fusion of information retrieval result sets. Artif Intell Rev 25:179–191CrossRefGoogle Scholar
  86. 86.
    Loffler J (2000) Content-based retrieval of 3D models in distributed web databases by visual shape information. In: Proceedings of the IEEE international conference on information visualization, pp 82–87Google Scholar
  87. 87.
    Lopes R, Ayache A, Makni N, Puech P, Villers A, Mordon S, Betrouni N (2011) Prostate cancer characterization on MR images using fractal features. Med Phys 38(1):83–95CrossRefGoogle Scholar
  88. 88.
    Marchand-Maillet S (2000) Content-based video retrieval: an overview. In: Tech. rep. 00.06, CUI—University of Geneva, Geneva, SwitzerlandGoogle Scholar
  89. 89.
    Mariolis I, Korfiatis PD, Costaridou LI, Kalogeropoulou C, Daoussis D, Petsas T (2010) Investigation of 3D textural features’ discriminating ability in diffuse lung disease quantification in MDCT. In: IEEE international conference on imaging systems and techniques, IST 2010, pp 135–138Google Scholar
  90. 90.
    Mezaris V, Kompatsiaris I, Boulgouris N, Strintzis M (2004) Real-time compressed-domain spatiotemporal segmentation and ontologies for video indexing and retrieval. IEEE Trans Circuits Syst Video Technol 14(5):606–621CrossRefGoogle Scholar
  91. 91.
    Mitra NJ, Guibas LJ, Pauly M (2006) Partial and approximate symmetry detection for 3D geometry. ACM Trans Graph 25:560–568CrossRefGoogle Scholar
  92. 92.
    Moënne-Loccoz N, Janvier B, Marchand-Maillet S, Bruno E (2006) Handling temporal heterogeneous data for content-based management of large video collections. Multimedia Tools and Applications 31:309–325CrossRefGoogle Scholar
  93. 93.
    Müller H, Clough P, Deselaers T, Caputo B (eds) (2010) ImageCLEF—experimental evaluation in visual information retrieval. In: The springer international series on information retrieval, vol 32. Springer, Berlin HeidelbergGoogle Scholar
  94. 94.
    Müller H, Kalpathy-Cramer J (2009) Analyzing the content out of context—features and gaps in medical image retrieval. Int J Healthc Inform Syst Informat 4(1):88–98CrossRefGoogle Scholar
  95. 95.
    Müller H, Michoux N, Bandon D, Geissbuhler A (2004) A review of content–based image retrieval systems in medicine–clinical benefits and future directions. Int J Med Informatics 73(1):1–23CrossRefGoogle Scholar
  96. 96.
    Nallapati R (2004) Discriminative models for information retrieval. In: ACM-SIGIRGoogle Scholar
  97. 97.
    Nguyen D, Kuhnert L, Jiang T, Thamke S, Kuhnert K (2011) Vegetation detection for outdoor automobile guidance. In: Proceedings of the IEEE international conference on industrial technology, pp 358–364Google Scholar
  98. 98.
    Ohbuchi R, Otagiri T, Ibato M, Takei T (2002) Shape-similarity search of three-dimensional models using parameterized statistics. In: Proceedings of the 10th pacific conference on computer graphics and applications, 2002, pp 265–274Google Scholar
  99. 99.
    Osada R, Funkhouser T, Chazelle B, Dobkin D (2002) Shape distributions. ACM Trans Graph 21(4):807–832CrossRefGoogle Scholar
  100. 100.
    Paulhac L (2009) Outils et méthodes d’analyse d’images 3D texturées : application à la segmentation des images échographiques. PhD thesis, Université François Rabelais–Tours, FranceGoogle Scholar
  101. 101.
    Paulhac L, Makris P, Gregoire JM, Ramel JY (2009) Approche multirésolution pour la segmentation de textures dans les images ultrasonores 3D. In: XXIIe colloque GRETSI (traitement du signal et des images). Dijon, FranceGoogle Scholar
  102. 102.
    Paulhac L, Makris P, Gregoire JM, Ramel JY (2009) Descripteurs de textures pour la segmentation d’images echographiques 3D. In: ORASIS’09—Congrès des jeunes chercheurs en vision par ordinateur. Trégastel, FranceGoogle Scholar
  103. 103.
    Paulhac L, Makris P, Ramel JY (2008) Comparison between 2D and 3D local binary pattern methods for characterisation of three–dimensional textures. In: Proceedings of the 5th international conference on image analysis and recognition, ICIAR ’08. Springer-Verlag, Berlin, Heidelberg, pp 670–679CrossRefGoogle Scholar
  104. 104.
    Pietroni N, Cignoni P, Otaduy MA, Scopigno R (2010) Solid-texture synthesis: a survey. IEEE Comput Graph Appl 30(4):74–89CrossRefGoogle Scholar
  105. 105.
    Qian Y, Gao X, Loomes M, Comley R, Barn B, Hui R, Tian Z (2011) Content-based retrieval of 3D medical images. In: The 3rd international conference on eHealth, telemedicine, and social medicine (eTELEMED 2011). IARIA, pp. 7–12Google Scholar
  106. 106.
    Ranguelova E, Quinn A (1999) Analysis and synthesis of three-dimensional Gaussian Markov random fields. In: Proceedings of the IEEE international conference on image processing, ICIP 99, vol 3, pp 430–434Google Scholar
  107. 107.
    Reyes-Aldasoro CC, Bhalerao A (2007) Volumetric texture segmentation by discriminant feature selection and multiresolution classification. IEEE Trans Med Imag 26(1):1–14CrossRefGoogle Scholar
  108. 108.
    Rubner Y, Tomasi C, Guibas LJ (2000) The earth mover’s distance as a metric for image retrieval. Int J Comput Vis 40(2):99–121CrossRefzbMATHGoogle Scholar
  109. 109.
    Samir C, Srivastava A, Daoudi M (2006) Three-dimensional face recognition using shapes of facial curves. IEEE Trans Pattern Anal Mach Intell 28(11):1858–1863CrossRefGoogle Scholar
  110. 110.
    Saupe D, Vranić D (2001) 3D model retrieval with spherical harmonics and moments. In: Radig B, Florczyk S (eds) Pattern recognition. Lecture notes in computer science, vol 2191. Springer Berlin/Heidelberg, pp 392–397CrossRefGoogle Scholar
  111. 111.
    Sebe N, Lew MS (2001) Texture features for content-based retrieval. Springer-Verlag, London, UK, pp 51–85Google Scholar
  112. 112.
    Shen L, Bai L (2008) 3D Gabor wavelets for evaluating SPM normalization algorithm. Med Image Anal 12(3):375–383CrossRefGoogle Scholar
  113. 113.
    Shibata T, Suzuki M, Kato T (2004) 3D retrieval system based on cognitive level—human interface for 3D building database. In: Proceedings 2004 international conference on cyberworlds, CW 2004, pp 107–112Google Scholar
  114. 114.
    Shilane P, Min P, Kazhdan M, Funkhouser T (2004) The princeton shape benchmark. In: Shape modeling applications. Genova, Italy, pp 167–178Google Scholar
  115. 115.
    Sikora T (2001) The mpeg-7 visual standard for content description-an overview. IEEE Trans Circuits Syst Video Technol 11(6):696–702CrossRefMathSciNetGoogle Scholar
  116. 116.
    Smeulders AWM, Worring M, Santini S, Gupta A, Jain R (2000) Content-based image retrieval at the end of the early years. IEEE Trans Pattern Anal Mach Intell 22(12):1349–1380CrossRefGoogle Scholar
  117. 117.
    Snoek CG, Worring M (2008) Concept-based video retrieval. Found Trends Inform Retriev 2(4):215–322Google Scholar
  118. 118.
    Snoek CGM, Worring M, Smeulders AWM (2005) Early versus late fusion in semantic video analysis. In: Multimedia ’05: proceedings of the 13th annual ACM international conference on multimedia. ACM, New York, NY, USA, pp 399–402CrossRefGoogle Scholar
  119. 119.
    Sundar H, Silver D, Gagvani N, Dickinson S (2003) Skeleton based shape matching and retrieval. In: Shape modeling international, 2003, pp 130–139Google Scholar
  120. 120.
    Suzuki MT, Kato T, Otsu N (2000) Similarity retrieval of 3D polygonal models using rotation invariant shape descriptors. In: Proceedings of the IEEE international conference on systems, man and cybernetics, vol 4, pp 2946–2952Google Scholar
  121. 121.
    Tangelder JWH, Veltkamp RC (2004) A survey of content based 3D shape retrieval methods. In: Proceedings—shape modeling international SMI 2004, pp 145–156Google Scholar
  122. 122.
    Thornley CV, Johnson AC, Smeaton AF, Lee H (2011) The scholarly impact of TRECVid (2003–2009). J Am Soc Inf Sci Technol 62(4):613–627CrossRefGoogle Scholar
  123. 123.
    Toussaint GT (1978) The use of context in pattern recognition 10(3):189–204Google Scholar
  124. 124.
    Tsai F, Chang CK, Rau JY, Lin TH, Liu GR (2007) 3D computation of gray level co-occurrence in hyperspectral image cubes. In: Yuille A, Zhu SC, Cremers D, Wang Y (eds) Energy minimization methods in computer vision and pattern recognition. Lecture notes in computer science (LNCS), vol 4679. Springer Berlin/Heidelberg, pp 429–440CrossRefGoogle Scholar
  125. 125.
    Veltkamp RC, Ruijsenaars R, Spagnuolo M, van Zwol R, ter Haar F (2006) SHREC2006 3D shape retrieval contest. In: Tech. rep., department of information and computing sciences, Utrecht UniversityGoogle Scholar
  126. 126.
    Venkatesh Babu R, Ramakrishnan K (2002) Content-based video retrieval using motion descriptors extracted from compressed domain. In: IEEE International Symposium on Circuits and systems, 2002. ISCAS 2002, vol 4, pp IV-141–IV-144. doi: 10.1109/ISCAS.2002.1010409
  127. 127.
    Viaud ML, Buisson O, Saulnier A, Guenais C (2010) Video exploration: from multimedia content analysis to interactive visualization. In: Proceedings of the international conference on multimedia, MM ’10. ACM, New York, NY, USA, pp 1311–1314CrossRefGoogle Scholar
  128. 128.
    Vranic D, Saupe D (2002) Description of 3D-shape using a complex function on the sphere. In: Proceedings of the IEEE international conference on multimedia and expo, ICME ’02, vol 1, pp 177–180Google Scholar
  129. 129.
    Vranic DV, Saupe D, Richter J (2001) Tools for 3D-object retrieval: Karhunen-loeve transform and spherical harmonics. In: 2001 IEEE 4th workshop on multimedia signal processing, pp 293–298Google Scholar
  130. 130.
    Waksman A, Rosenfeld A (1996) Sparse, opaque three-dimensional texture, 2A: visibility. Graph Models Image Process 58(2):155–163CrossRefGoogle Scholar
  131. 131.
    Waksman A, Rosenfeld A (1996) Sparse, opaque three-dimensional texture, 2B: photometry. Pattern Recognit 29(2):297–313CrossRefGoogle Scholar
  132. 132.
    Wang X, Tang X (2004) A unified framework for subspace face recognition. IEEE Trans Pattern Anal Mach Intell 26(9):1222–1228CrossRefGoogle Scholar
  133. 133.
    Westerveld T, Ianeva T, Boldareva L, de Vries AP, Hiemstra D (2003) Combining information sources for video retrieval—the lowlands team at trecvid 2003. In: Proceedings of the TRECVID 2003 conferenceGoogle Scholar
  134. 134.
    Wong HS, Cheung KK, Ip HH (2004) 3D head model classification by evolutionary optimization of the extended gaussian image representation. Pattern Recogn 37(12):2307–2322CrossRefzbMATHGoogle Scholar
  135. 135.
    von Wyl M, Mohamed H, Bruno E, Marchand-Maillet S (2011) A parallel cross-modal search engine over large-scale multimedia collections with interactive relevance feedback. In: Demo at ACM international conference on multimedia retrieval (ACM-ICMR’11). Trento, ItalyGoogle Scholar
  136. 136.
    Xu DH, Kurani AS, Furst J, Raicu DS (2004) Run-length encoding for volumetric texture. In: The 4th IASTED international conference on visualization, imaging, and image processing—VIIP 2004. Marbella, SpainGoogle Scholar
  137. 137.
    Xu Y, Sonka M, McLennan G, Guo J, Hoffman EA (2005) Sensitivity and specificity of 3-D texture analysis of lung parenchyma is better than 2-D for discrimination of lung pathology in stage 0 COPD. In: Amini AA, Manduca A (eds) SPIE medical imaging, vol 5746. SPIE, pp 474–485Google Scholar
  138. 138.
    Xu Y, Sonka M, McLennan G, Guo J, Hoffman EA (2006) MDCT-based 3D texture classification of emphysema and early smoking related lung pathologies. IEEE TransMed Imaging 25(4):464–475CrossRefGoogle Scholar
  139. 139.
    Yang J, Jiang YG, Hauptmann AG, Ngo CW (2007) Evaluating bag-of-visual-words representations in scene classification. In: Proceedings of the international workshop on multimedia information retrieval, MIR ’07. ACM, New York, NY, USA, pp 197–206CrossRefGoogle Scholar
  140. 140.
    Yang X, Schuster D, Master V, Nieh P, Fenster A, Fei B (2011) Automatic 3D segmentation of ultrasound images using atlas registration and statistical texture prior. In: Medical imaging 2011: visualization, image-guided procedures, and modeling, vol 7964. SPIE, p 796432Google Scholar
  141. 141.
    YouTube (2012) http://www.youtube.com/t/press_statistics. Accessed 14 Mar 2012
  142. 142.
    van Zaanen M, de Croon G (2004) FINT: find images and text. In: Working notes of the 2004 CLEF workshop. Bath, EnglandGoogle Scholar
  143. 143.
    Zhan Y, Shen D (2006) Deformable segmentation of 3–D ultrasound prostate images using statistical texture matching method. IEEE Trans Med Imag 25(3):256–272CrossRefMathSciNetGoogle Scholar
  144. 144.
    Zhang L, Samaras D (2006) Face recognition from a single training image under arbitrary unknown lighting using spherical harmonics. IEEE Trans Pattern Anal Mach Intell 28(3):351–363CrossRefGoogle Scholar
  145. 145.
    Zhao T, Nevatia R (2004) Tracking multiple humans in complex situations. IEEE Trans Pattern Anal Mach Intell 26(9):1208–1221CrossRefGoogle Scholar
  146. 146.
    Zhou X, Depeursinge A, Müller H (2010) Information fusion for combining visual and textual image retrieval. In: 20th IEEE international conference on pattern recognition (ICPR), pp 1590–1593Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Antonio Foncubierta-Rodríguez
    • 1
  • Henning Müller
    • 1
  • Adrien Depeursinge
    • 1
  1. 1.University of Applied Sciences Western Switzerland (HES–SO)SierreSwitzerland

Personalised recommendations