Multimedia Tools and Applications

, Volume 71, Issue 3, pp 1469–1497 | Cite as

A simple, sensitive and secure image encryption algorithm based on hyper-chaotic system with only one round diffusion process

  • Benyamin NorouziEmail author
  • Sattar Mirzakuchaki
  • Seyed Mohammad Seyedzadeh
  • Mohammad Reza Mosavi


Based on hyper-chaotic systems, a novel image encryption algorithm is introduced in this paper. The advantages of our proposed approach are that it can be realized easily in one round diffusion process and is computationally very simple while attaining high security level, high key sensitivity, high plaintext sensitivity and other properties simultaneously. The key stream generated by hyper-chaotic system is related to the original image. Moreover, to encrypt each pixel, we use the sum of pixels which are located after that pixel. The algorithm uses different summations when encrypting different input images (even with the same sequence based on hyper-chaotic system). This, in turn, will considerably enhance the cryptosystem resistance against known/chosen-plaintext and differential attacks. The change rate of the number of pixels in the cipher-image when only one pixel of the original image is modified (NPCR) and the Unified Average Changing Intensity (UACI) are already very high (NPCR > 99.80233 % and UACI > 33.55484 %). Also, experimental results such as key space analysis, histograms, correlation coefficients, information entropy, peak signal-to-noise ratio, key sensitivity analysis, differential analysis and decryption quality, show that the proposed image encryption algorithm is secure and reliable, with high potential to be adopted for the secure image communication applications.


Image encryption Diffusion process Security Sensitivity NPCR UACI 



The authors would like to thank the Editor and the anonymous Referees for their valuable comments and suggestions to improve this paper.


  1. 1.
    Akhshani A, Behnia S, Akhavan A, Hassan HA, Hassan Z (2010) A novel scheme for image encryption based on 2D piecewise chaotic maps. J Opt Commun 283:3259–3266CrossRefGoogle Scholar
  2. 2.
    Alvarez E, Fernandez A, García P, Jimenez J, Marcano A (1999) New approach to chaotic encryption. J Phys Lett A 263:373–375CrossRefGoogle Scholar
  3. 3.
    Alvarez G, Montoya F, Romera M, Pastor G (2000) Cryptanalysis of a chaotic encryption system. J Phys Lett A 276:191–196CrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    Amin M, Faragallah OS, El-Latif AAA (2010) A chaotic block cipher algorithm for image cryptosystems. J Commun Nonlinear Sci Numer Simul 15(11):3484–3497CrossRefzbMATHGoogle Scholar
  5. 5.
    Baptista MS (1998) Cryptography with chaos. J Phys Lett A 240:50–54CrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    Behnia S, Akhshani A, Ahadpour S, Mahmodi H, Akhavan A (2007) A fast chaotic encryption scheme based on piecewise nonlinear chaotic maps. J Phys Lett A 366:391–396CrossRefGoogle Scholar
  7. 7.
    Behnia S, Akhshani A, Mahmodi H, Akhavan A (2008) A novel algorithm for image encryption based on mixture of chaotic maps. J Chaos Solitons Fractals 35(2):408–419CrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    Belkhouche F and Qidwai U (2003) Binary image encoding using one-dimensional chaotic map. Proc IEEE Annu Techical Conf 39–43Google Scholar
  9. 9.
    Borujeni SE and Eshghi M (2009) Chaotic image encryption design using Tompkins-Paige algorithm. J Math Probl Eng 2009(762652)Google Scholar
  10. 10.
    Borujeni SE, Eshghi M Chaotic image encryption system using phase-magnitude transformation and pixel substitution. J Telecommun Syst. doi: 10.1007/s11235-011-9458-8, 2011
  11. 11.
    Chen HC, Guo JI, Huang LC, Yen JC (2003) Design and realization of a New signal security system for multimedia data transmission. EURASIP J Appl Signal Proc 13:1291–1305CrossRefGoogle Scholar
  12. 12.
    Chen G, Mao Y, Chui CK (2004) A symmetric image encryption scheme based on 3D chaotic cat maps. J Chaos Solitons Fractals 21:749–761CrossRefzbMATHMathSciNetGoogle Scholar
  13. 13.
    El-Latif AAA, Li L, Niu X (2012) A New image encryption scheme based on cyclic elliptic curve and chaotic system. Multimed Tool Appl. doi: 10.1007/s11042-012-1173-2
  14. 14.
    Encinas LH, Dominguez A (2006) Comment on ‘a technique for image encryption using digital signature’. J Opt Commun 268:261–265CrossRefGoogle Scholar
  15. 15.
    Francois M, Grosges T, Barchiesi D, Erra R (2012) A New image encryption scheme based on a chaotic function. J Signal Process Image Commun 27:249–259CrossRefGoogle Scholar
  16. 16.
    Gao T, Chen Z (2008) A New image encryption algorithm based on hyper-chaos. J Phys Lett A 372:394–400CrossRefzbMATHGoogle Scholar
  17. 17.
    Gao T, Chen Z (2008) Image encryption based on a new total shuffling algorithm. J Chaos Solitons Fractals 38:213–220CrossRefzbMATHMathSciNetGoogle Scholar
  18. 18.
    Gao H, Zhang Y, Liang S, Li D (2006) A New chaotic algorithm for image encryption. J Chaos Solitons Fractals 29:393–399CrossRefzbMATHGoogle Scholar
  19. 19.
    Ge X, Liu F, Lu B, Yang C (2010) Improvement of Rhouma’s attacks on Gao algorithm. J Phys Lett A 374:1362–1367CrossRefzbMATHGoogle Scholar
  20. 20.
    Habutsu T, Nishio Y, Sasase I, Mori S (1991) A secret key cryptosystem by iterating a chaotic map. J Lect Notes Comput Sci 547:127–140CrossRefMathSciNetGoogle Scholar
  21. 21.
    Huang X (2010) Image encryption algorithm using chaotic Chebyshev generator. J Nonlinear Dyn 67(4):2411–2417CrossRefGoogle Scholar
  22. 22.
    Kumar A, Ghose MK (2011) Extended substitution–diffusion based image cipher using chaotic standard Map. J Commun Nonlinear Sci Numer Simulat 16:372–382CrossRefzbMATHMathSciNetGoogle Scholar
  23. 23.
    Li S, Zheng X (2002) Cryptanalysis of a chaotic image encryption method. Proc IEEE Symp Circ Syst 2:708–711Google Scholar
  24. 24.
    Lian S (2009) Efficient image or video encryption based on spatiotemporal chaos system. J Chaos Solitons Fractals 40:2509–2519CrossRefzbMATHGoogle Scholar
  25. 25.
    Lian S, Sun J, Wang Z (2005) A block cipher based on a suitable use of the chaotic standard Map. J Chaos Solitons Fractals 26:117–129CrossRefzbMATHGoogle Scholar
  26. 26.
    Liao X, Lai S, Zhou Q (2010) A novel image encryption algorithm based on self-adaptive wave transmission. J Signal Process 90:2714–2722CrossRefzbMATHGoogle Scholar
  27. 27.
    Mao Y, Chen G, Lian S (2004) A novel fast image encryption scheme based on the three-dimensional chaotic baker Map. J Bifurcat Chaos 14(10):3613–3624CrossRefzbMATHMathSciNetGoogle Scholar
  28. 28.
    Mazloom S, Eftekhari-Moghadam AM (2009) Color image encryption based on coupled nonlinear chaotic map. J Chaos Solitons Fractals 42:1745–1754CrossRefzbMATHGoogle Scholar
  29. 29.
    Mirzaei O, Yaghoobi M, Irani H (2012) A New image encryption method: parallel Sub-image encryption with hyper chaos. J Nonlinear Dyn 67(1):557–566CrossRefMathSciNetGoogle Scholar
  30. 30.
    Pareek NK, Patidar V, Sud KK (2006) Image encryption using chaotic logistic Map. J Image Vis Comput 24:926–934CrossRefGoogle Scholar
  31. 31.
    Patidar V, Pareek NK, Purohit G, Sud KK (2010) Modified substitution–diffusion image cipher using chaotic standard and logistic maps. J Commun Nonlinear Sci Numer Simul 15(10):2755–2765CrossRefzbMATHMathSciNetGoogle Scholar
  32. 32.
    Patidar V, Pareek NK, Purohit G, Sud KK (2011) A robust and secure chaotic standard Map based pseudorandom permutation-substitution scheme for image encryption. J Opt Commun 284:4331–4339CrossRefGoogle Scholar
  33. 33.
    Patidar V, Pareek NK, Sud KK (2009) A New substitution–diffusion based image cipher using chaotic standard and logistic maps. J Commun Nonlinear Sci Numer Simulat 14:3056–3075CrossRefGoogle Scholar
  34. 34.
    Prasanna SRM, Rao YVS, Mitra A (2006) An image encryption method with magnitude and phase manipulation using carrier images. Int J Electr Comput Eng 1:132–137Google Scholar
  35. 35.
    Rhouma R, Belghith S (2008) Cryptanalysis of a new image encryption algorithm based on hyper-chaos. J Phys Lett A 372:5973–5978CrossRefzbMATHGoogle Scholar
  36. 36.
    Sam IS, Devaraj P, Bhuvaneswaran RS (2012) A novel image cipher based on mixed transformed logistic maps. Multimed Tool Appl 56:315–330. doi: 10.1007/s11042-010-0652-6 CrossRefGoogle Scholar
  37. 37.
    Seyedzadeh SM, Mirzakuchaki S (2012) A fast color image encryption algorithm based on coupled Two-dimensional piecewise chaotic Map. J Signal Process 92:1202–1215CrossRefGoogle Scholar
  38. 38.
    Singh N, Sinha A (2008) Optical image encryption using fractional Fourier transform and chaos. J Opt Lasers Eng 46:117–123CrossRefGoogle Scholar
  39. 39.
    Sinha A, Singh K (2003) A technique for image encryption using digital signature. J Opt Commun 218:229–234CrossRefGoogle Scholar
  40. 40.
    Sun F, Liu S, Li Z, Lu Z (2008) A novel image encryption scheme based on spatial chaos map. J Chaos Solitons Fractals 38:631–640CrossRefzbMATHMathSciNetGoogle Scholar
  41. 41.
    Sun F, Lu Z, Liu S (2010) A New cryptosystem based on spatial chaotic system. J Opt Commun 283:2066–2073CrossRefGoogle Scholar
  42. 42.
    Taneja N, Raman B, Gupta I (2012) Combinational domain encryption for still visual data. Multimed Tool Appl 59:775–793. doi: 10.1007/s11042-011-0775-4 CrossRefGoogle Scholar
  43. 43.
    Tong X, Cui M, Wang Z (2009) A New feedback image encryption scheme based on perturbation with dynamical compound chaotic sequence cipher generator. J Opt Commun 282:2722–2728CrossRefGoogle Scholar
  44. 44.
    Wang X, Teng L (2012) An image blocks encryption algorithm based on spatiotemporal chaos. J Nonlinear Dyn 67:365–371CrossRefMathSciNetGoogle Scholar
  45. 45.
    Wang Y, Wong KW, Liao X, Chen G (2011) A New chaos-based fast image encryption algorithm. J Appl Soft Comput 11(1):514–522CrossRefGoogle Scholar
  46. 46.
    Wang Y, Wong KW, Liao X, Xiang T, Chen G (2009) A chaos-based image encryption algorithm with variable control parameters. J Chaos Solitons Fractals 41:1773–1783CrossRefzbMATHGoogle Scholar
  47. 47.
    Wang X, Zhao D, Chen L (2006) Image encryption based on extended fractional Fourier transform and digital holography technique. J Opt Commun 260:449–453CrossRefGoogle Scholar
  48. 48.
    Wong KW, Ho SW, Yung CK (2003) A chaotic cryptography scheme for generating short ciphertext. J Phys Lett A 310:67–73CrossRefzbMATHMathSciNetGoogle Scholar
  49. 49.
    Wong KW, Kwok BSH, Law WS (2008) A fast image encryption scheme based on chaotic standard Map. J Phys Lett A 372:2645–2652CrossRefzbMATHGoogle Scholar
  50. 50.
    Xiang T, Liao X, Tang G, Chen Y, Wong KW (2006) A novel block cryptosystem based on iterating a chaotic Map. J Phys Lett A 349:109–115CrossRefzbMATHGoogle Scholar
  51. 51.
    Xiao D, Liao X, and Wei P Analysis and Improvement of a Chaos-based Image Encryption Algorithm. J Chaos Solitons Fractals 40:2191–2199Google Scholar
  52. 52.
    Yanchuk S and Kapitaniak T Symmetry-increasing bifurcation as a predictor of a chaos-hyperchaos transition in coupled systems. J Phys Rev E 64, doi:  10.1103/PhysRevE.64.056235
  53. 53.
    Yanchuk S, Kapitaniak T (2001) Chaos–hyperchaos transition in coupled Rössler systems. J Phys Lett A 290:139–144CrossRefzbMATHGoogle Scholar
  54. 54.
    Yen JC, Guo JI (2000) A New chaotic key-based design for image encryption and decryption. Proc IEEE Int Conf Circ Syst 4:49–52Google Scholar
  55. 55.
    Yujun N, Xingyuan W, Mingjun W, Huaguang Z (2010) A New hyperchaotic system and its circuit implementation. Commun Nonlinear Sci Numer Simul 15(11):3518–3524CrossRefGoogle Scholar
  56. 56.
    Zhang Q, Guo L, Wei X (2010) Image encryption using DNA addition combining with chaotic maps. J Math Comput Model 52:2028–2035CrossRefzbMATHMathSciNetGoogle Scholar
  57. 57.
    Zhang G, Liu Q (2011) A novel image encryption method based on total shuffling scheme. J Opt Commun 284:2775–2780CrossRefGoogle Scholar
  58. 58.
    Zhao L, Adhikari A, Xiao D, Sakurai K (2012) On the security analysis of an image scrambling encryption of pixel Bit and its improved scheme based on self-correlation encryption. J Commun Nonlinear Sci Numer Simulat 17:3303–3327CrossRefMathSciNetGoogle Scholar
  59. 59.
    Zhu C (2012) A novel image encryption scheme based on improved hyperchaotic sequences. J Opt Commun 285:29–37CrossRefGoogle Scholar
  60. 60.
    Zhu ZL, Zhang W, Wong KW, Yu H (2011) A chaos-based symmetric image encryption scheme using a Bit-level permutation. J Inform Sci 181:1171–1186CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • Benyamin Norouzi
    • 1
    Email author
  • Sattar Mirzakuchaki
    • 1
  • Seyed Mohammad Seyedzadeh
    • 1
  • Mohammad Reza Mosavi
    • 1
  1. 1.Department of Electrical EngineeringIran University of Science and TechnologyNarmakIran

Personalised recommendations