Multimedia Tools and Applications

, Volume 69, Issue 3, pp 621–641 | Cite as

Priority and delay aware packet management framework for real-time video transport over 802.11e WLANs

Article

Abstract

The rigid delay constraint is one of the most challenging issues in real-time video delivery over wireless networks. The expired video packets will become useless for the decoding and display even if they are received correctly at the receiver. Because the significance of each video packet is different, the schedulers have to take into account not only the urgency of the packet but also its importance in the real-time video applications. However, the existing QoS-based IEEE 802.11e MAC protocol leaves the urgency and the importance of video packets out of consideration. This paper proposes a Priority and Delay Aware Packet Management Framework (PDA-PMF) to improve the transmission quality of real-time video streaming over IEEE 802.11e WLANs. In the MAC layer, this framework estimates the delay of each video packet. Subsequently, video packets are sent or dropped according to both the significance of the video packets and the estimation value of the delay. Simulation results show that the proposed scheme can not only reduce the packet losses, but also protect the more important video packets, so as to improve the received video quality effectively.

Keywords

Real-time Video QoS 802.11e EDCA Priority Deadline 

References

  1. 1.
    Ansel P, Ni Q, Turletti T (2006) FHCF: a simple and efficient scheduling scheme for IEEE 802.11e Wireless LAN. Mobile Netw Appl 11(3):391–403CrossRefGoogle Scholar
  2. 2.
    Bianchi G (2000) Performance analysis of the IEEE 802.11 distributed coordination function. IEEE J Sel Area Comm 18(3):535–547CrossRefGoogle Scholar
  3. 3.
    Cerqueira E, Zeadally S, Leszczuk M, Curado M, Mauthe A (2011) Recent advances in multimedia networking. Multimed Tools Appl 54(3):635–647CrossRefGoogle Scholar
  4. 4.
    Chakareski J, Frossard P (2006) Rate-distortion optimized distributed packet scheduling of multiple video streams over shared communication resources. IEEE Trans Multimedia 8(2):207–218CrossRefGoogle Scholar
  5. 5.
    Chen C-M, Lin C-W, Chen Y-C (2010) Cross-Layer Packet Retry Limit Adaptation for Video Transport Over Wireless LANs. IEEE Trans Circ Syst Vid 20(11):1448–1461CrossRefGoogle Scholar
  6. 6.
    Chen Y-S, Chuang M-C, Chen C-K (2008) DeuceScan: Deuce-Based Fast Handoff Scheme in IEEE 802.11 Wireless Networks. IEEE T Veh Technol 57(2):1126–1141CrossRefGoogle Scholar
  7. 7.
    Chilamkurti N, Zeadally S, Soni R, Giambene G (2010) Wireless multimedia delivery over 802.11e with cross-layer optimization techniques, Multimed Tools Appl 47(1):189–205CrossRefGoogle Scholar
  8. 8.
    Chou PA, Miao Z (2006) Rate-distortion optimized streaming of packetized media. IEEE Trans Multimedia 8(2):390–404CrossRefGoogle Scholar
  9. 9.
    Du J, Chen CW (2010) A deadline-aware transmission framework for H.264/AVC video over IEEE 802.11e EDCA wireless networks. In: Visual Communications and Image Processing 2010, SPIEGoogle Scholar
  10. 10.
    Dua A, Chan CW, Bambos N, Apostolopoulos J (2010) Channel, deadline, and distortion (CD 2) aware scheduling for video streams over wireless. IEEE TransWireless Commun 9(3):1001–1011Google Scholar
  11. 11.
    Fiandrotti A, Gallucci D, Masala E, De Martin JC (2010) Content-adaptive traffic prioritization of spatio-temporal scalable video for robust communications over QoS-provisioned 802.11e networks. Signal Process Image Commun 25(6):438–449CrossRefGoogle Scholar
  12. 12.
    Grilo A, Macedo M, Nunes M (2003) A scheduling algorithm for QoS support in IEEE802.11 networks, IEEE Trans Wireless Commun 10(3):36–43CrossRefGoogle Scholar
  13. 13.
    Hirantha Sithira Abeysekera B, Matsuda T, Takine T (2008) Dynamic contention window control mechanism to achieve fairness between uplink and downlink flows in IEEE 802.11 Wireless LANs. IEEE Trans Wireless Commun 7(9):3517–3525CrossRefGoogle Scholar
  14. 14.
    IEEE Std 802.11-2007 (2007) IEEE standard for information technology-telecommunications and information exchange between systems-local and metropolitan area networks-specific requirements—part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications (Revision of IEEE Std 802.11-1999), pp C1 -1184Google Scholar
  15. 15.
    Jain R (2004) Quality of experience. IEEE Multimedia 11(1):96–95CrossRefGoogle Scholar
  16. 16.
    JM16.2 (2012) http://iphome.hhi.de/suehring/tml/download/. Accessed 6 Jan 2011
  17. 17.
    Karamad E, Ashtiani F (2009) Performance analysis of IEEE 802.11 DCF and 802.11e EDCA based on queueing networks. IET Commun 3(5):871–881CrossRefGoogle Scholar
  18. 18.
    Krishna PV, Misra S, Obaidat MS, Saritha V (2010) Virtual Backoff Algorithm: An Enhancement to 802.11 Medium-Access Control to Improve the Performance of Wireless Networks. IEEE T Veh Technol 59(3):1068–1075CrossRefGoogle Scholar
  19. 19.
    Ksentini A, Naimi M, Gueroui A (2006) Toward an improvement of H.264 video transmission over IEEE 802.11e through a cross-layer architecture. IEEE Commun Mag 44(1):107–114CrossRefGoogle Scholar
  20. 20.
    Kuo W-K (2008) Traffic scheduling for multimedia transmission over IEEE 802.11e wireless LAN. IET Commun 2(1):92–97CrossRefGoogle Scholar
  21. 21.
    Latré S, Simoens P, et al. (2009) An autonomic architecture for optimizing QoE in multimedia access networks. Comput Netw 53(10):1587–1602CrossRefMATHGoogle Scholar
  22. 22.
    Li F, Liu G (2009) Compressed-Domain-Based Transmission Distortion Modeling for Precoded H.264/AVC Video. IEEE T Circ Syst Vid 19(12):1908–1914CrossRefGoogle Scholar
  23. 23.
    Li F, Liu G, He L (2010) Cross-layer scheduling for multiuser H.264 video transmission over wireless networks. IET Commun 4(8):1012–1025CrossRefMathSciNetGoogle Scholar
  24. 24.
    Liang YJ, Apostolopoulos JG, Girod B (2008) Analysis of packet loss for compressed video: effect of burst losses and correlation between error frames. IEEE Trans Circuits Syst Video Technol 18(7):861–874CrossRefGoogle Scholar
  25. 25.
    Liebl G, Kalman M, Girod B (2005) Deadline-aware scheduling for wireless video streaming. IEEE International Conference on Multimedia and Expo, ICMEGoogle Scholar
  26. 26.
    Lin C-H, Shieh C-K, Ke C-H, Chilamkurti NK, Zeadally S (2009) An adaptive cross-layer mapping algorithm for MPEG-4 video transmission over IEEE 802.11e WLAN. Telecommun Syst 42(3):223–234CrossRefGoogle Scholar
  27. 27.
    Liu H, Zhao Y (2006) Adaptive EDCA algorithm using video prediction for multimedia IEEE 802.11e WLAN. In: The International Conference on Wireless and Mobile Communications, 2006, ICWMC ’06Google Scholar
  28. 28.
    Lu M-H, Steenkiste P, Chen T (2007) A time-based adaptive retry strategy for video streaming in 802.11 WLANs. Wirel Commun Mob Comput 7(2):187–203CrossRefGoogle Scholar
  29. 29.
    Mangold S, Choi S, Hiertz GR, Klein O, Walke B (2003) Analysis of IEEE 802.11e for QoS support in wireless LANs. IEEE Transactions on Wireless Communications 10(6):40–50CrossRefGoogle Scholar
  30. 30.
    Mohr AE, Riskin EA, Ladner RE (2000) Unequal loss protection: graceful degradation of image quality over packet erasure channels through forward error correction. IEEE J Sel Area Comm 18(6):819–828CrossRefGoogle Scholar
  31. 31.
    ns2 (2012) http://www.isi.edu/nsnam/ns/. Accessed 3 Feb 2005
  32. 32.
    Romaniak P, Mu M, Mauthe A, D’Antonio S, Leszczuk M (2008) Framework for the integrated video quality assessment. In: 18th ITC specialist seminar on quality of experienceGoogle Scholar
  33. 33.
    Ryu S, Ryu B, Seo H, Shin M (2005) Urgency and Efficiency based Packet Scheduling Algorithm for OFDMA wireless system. 2005 IEEE International Conference on Communications, ICC 2005, pp 2779–2785Google Scholar
  34. 34.
    Schwarz H, Marpe D, Wiegand T (2007) Overview of the scalable video coding extension of the H.264/AVC standard. IEEE T Circ Syst Vid 17(9):1103–1120CrossRefGoogle Scholar
  35. 35.
    Stuhlmuller K, Farber N, Link M, Girod B (2000) Analysis of video transmission over lossy channels. IEEE J Sel Area Comm 18(6):1012–1032CrossRefGoogle Scholar
  36. 36.
    Takahashi A, Hands D, Barriac V (2008) Standardization activities in the ITU for a QoE assessment of IPTV. IEEE Commun Mag 46(2):78–84CrossRefGoogle Scholar
  37. 37.
    TRECVID (2012) http://www-nlpir.nist.gov/projects/trecvid/. 26 April 2011
  38. 38.
    Tsai M-F, Shieh C-K, Ke C-H, Deng D-J (2010) Sub-packet forward error correction mechanism for video streaming over wireless networks. Multimed Tools Appl 47(1):49–69CrossRefGoogle Scholar
  39. 39.
    van der Schaar M, Andreopoulos Y, Hu Z (2006) Optimized scalable video streaming over IEEE 802.11 a/e HCCA wireless networks under delay constraints. IEEE Trans Mob Comput 5(6):755–768CrossRefGoogle Scholar
  40. 40.
    Wang Z, Bovik AC, Sheikh HR, Simoncelli EP (2004) Image quality assessment: from error visibility to structural similarity. IEEE Trans Image Process 13(4):600–612CrossRefGoogle Scholar
  41. 41.
    Xiao Y (2005) Performance analysis of priority schemes for IEEE 802.11 and IEEE 802.11e wireless LANs. IEEE Trans Wireless Commun 4(4):1506–1515CrossRefGoogle Scholar
  42. 42.
    Zhang R, Regunathan SL, Rose K (2000) Video coding with optimal inter/intra-mode switching for packet loss resilience. IEEE J Sel Area Comm 18(6):966–976CrossRefGoogle Scholar
  43. 43.
    Zorzi M, Rao RR, Milstein LB (1997) ARQ error control for fading mobile radio channels. IEEE T Veh Technol 46(2):445–455CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.School of Electronic and Information EngineeringXi’an Jiaotong UniversityXi’anChina
  2. 2.School of Electronic and Information EngineeringTaiyuan University of Science and TechnologyTaiyuanChina

Personalised recommendations