Multimedia Tools and Applications

, Volume 66, Issue 3, pp 405–430 | Cite as

Probabilistic motion-compensated prediction in distributed video coding

  • Frederik VerbistEmail author
  • Nikos Deligiannis
  • Marc Jacobs
  • Joeri Barbarien
  • Peter Schelkens
  • Adrian Munteanu
  • Jan Cornelis


Distributed video coding (DVC) constitutes an original coding framework to meet the stringent requirements imposed by uplink-oriented and low-power mobile video applications. The quality of the side information available to the decoder and the efficiency of the employed channel codes are primary factors determining the success of a DVC system. This contribution introduces two novel techniques for probabilistic motion compensation in order to generate side information at the Wyner-Ziv decoder. The employed DVC scheme uses a base layer, serving as a hash to facilitate overlapped block motion estimation at the decoder side. On top of the base layer, a supplementary Wyner-Ziv layer is coded in the DCT domain. Both proposed probabilistic motion compensation techniques are driven by the actual correlation channel statistics and reuse information contained in the hash. Experimental results report significant rate savings caused by the novel side information generation methods compared to previous techniques. Moreover, the compression performance of the presented DVC architecture, featuring the proposed side-information generation techniques, delivers state-of-the-art compression performance.


Wyner-Ziv coding Distributed video coding Hash-based side information generation Probabilistic motion compensation 



This work was supported by the Fund for Scientific Research (FWO) Flanders (i.e. the postdoctoral fellowship of Peter Schelkens and the project G.0391.07. – N. Deligiannis) and by the Flemish Institute for the Promotion of Innovation by Science and Technology (IWT) – PhD bursary Frederik Verbist.


  1. 1.
    Aaron A, Rane S, Girod B (2004) Wyner-Ziv video coding with hash-based motion compensation at the receiver. In: IEEE International Conference on Image Processing, ICIP, Singapore, October 2004.Google Scholar
  2. 2.
    Aaron A, Rane S, Setton E, Girod B (2004) Transform-domain Wyner-Ziv codec for video. In: SPIE Visual Communications and Image Processing Conference, VCIP, San Jose, CA, January 2004.Google Scholar
  3. 3.
    Aaron A, Setton E, Girod B Towards practical Wyner-Ziv coding of video. In: IEEE International Conference on Image Processing, ICIP, Barcelona, Spain, September 2003. pp 869–872Google Scholar
  4. 4.
    Adikari ABB, Fernando WAC, Weerakkody WARJ, Arachchi HK (2006) Sequential motion estimation using luminance and chrominance information for distributed video coding of Wyner-Ziv frames. IEE Electron Lett 42(7):398–399CrossRefGoogle Scholar
  5. 5.
    Artigas X, Ascenso J, Dalai M, Klomp S, Kubasov D, Quaret M The DISCOVER codec: Architecture, techniques and evaluation. In: Picture Coding Symposium, PCS 2007, Lisboa, Portugal, November 2007 [Online]. Available: url:
  6. 6.
    Ascenso J, Brites C, Pereira F (2006) Content adaptive Wyner-Ziv video coding driven by motion activity. In: IEEE International Conference on Image Processing, Atlanta, GA, Oct. 2006.Google Scholar
  7. 7.
    Ascenso J, Brites C, Pereira F (2009) A flexible side information generation framework for distributed video coding. Springer, Multimedia Tools and Applications, Special Issue on Distributed Video CodingGoogle Scholar
  8. 8.
    Ascenso J, Brites C, Pereira F Improving frame interpolation with spatial motion smoothing for pixel domain distributed video coding. In: 5th EURASIP Conference on Speech and Image Processing, Multimedia Communications and Services, Smolenice, Slovac Republic, June-July 2005.Google Scholar
  9. 9.
    Astély D, Dahlman E, Furuskär A, Jading Y, Lindström M, Parkvall S (2009) LTE: The Evolution of Mobile Broadband. IEEE Communications Magazine:44–51Google Scholar
  10. 10.
    Bjontegaard G (2001) Calculation of average PSNR differences between RD-curves. ITU-T Video Coding Experts Group (VCEG), Austin, TXGoogle Scholar
  11. 11.
    Brites C, Ascenso J, Pedro JQ, Pereira F (2008) Evaluating a feedback channel based transform domain Wyner-Ziv video codec. Signal Process Image Comm 23(4):269–297CrossRefGoogle Scholar
  12. 12.
    Ciobanu L, Côrte-Real L (2010) Successive refinement of side information for multi-view distributed video coding. Springer Multimed Tools Appl 48(3):411–436CrossRefGoogle Scholar
  13. 13.
    Deligiannis N, Munteanu A, Clerckx T, Cornelis J, Schelkens P (2009) Overlapped block motion estimation and probabilistic compensation with application in distributed video coding. IEEE Signal Process Lett 16(9):743–746CrossRefGoogle Scholar
  14. 14.
    Deligiannis N, Munteanu A, Clerckx T, Cornelis J, Schelkens P (2009) Spatial-domain unidirectional DVC with side-information dependent correlation channel estimation. In: IEEE International Conference on Digital Signal Processing, DSP, Santorini, Greece, July 2009.Google Scholar
  15. 15.
    Deligiannis N, Munteanu A, Clerckx T, Cornelis J, Schelkens P On the side-information dependency of the temporal correlation in Wyner-Ziv video coding. In: IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2009, Taipei, Taiwan, 19-24 April 2009. pp 709 – 712Google Scholar
  16. 16.
    Girod B, Aaron A, Rane S, Rebollo-Monedero D (2005) Distributed video coding. Proc IEEE 93(1):71–83CrossRefGoogle Scholar
  17. 17.
    Guo X, Lu Y, Wu F, Zhao D, Gao W (2008) Wyner-Ziv-based multiview video coding. IEEE Trans Circ Syst Video Tech 18(6):713–724CrossRefGoogle Scholar
  18. 18.
    Khirallah C, Stankovic V, Stankovic L, Cheng S (2009) Multiterminal source coding for multiview images under wireless fading channels. Springer Multimed Tools Appl 48(3):457–470CrossRefGoogle Scholar
  19. 19.
    Kubasov D, Nayak J, Guillemot C Optimal reconstruction in Wyner-Ziv video coding with multiple side information. In: IEEE MultiMedia Signal Processing Workshop (MMSP), Chania, Crete, October 2007. pp 251–254Google Scholar
  20. 20.
    Martins R, Brites C, Ascenso J, Pereira F (2009) Refining side information for improved transform domain Wyner-Ziv video coding. IEEE Trans Circ Syst Video Tech 19(9):1327–1341CrossRefGoogle Scholar
  21. 21.
    Mys S, Slowack J, Skorupa J, Deligiannis N, Lambert P, Munteanu A, Van de Walle R (2010) Decoder-driven mode decision in a block based distributed video codec. Springer Multimedia Tools and ApplicationsGoogle Scholar
  22. 22.
    Orchard MT, Sullivan G (1994) Overlapped block motion compensation: An estimation-theoretic approach. IEEE Trans Image Process 3(4):693–699CrossRefGoogle Scholar
  23. 23.
    Pereira F, Ascenso J, Brites C (2007) Studying the GOP size impact on the performance of a feedback channel based Wyner-Ziv video codec. In: IEEE Pacific Rim Symposium on Image Video and Technology, Santiago, Chile, December 2007.Google Scholar
  24. 24.
    Pradhan S, Chou J, Ramchandran K (2003) Duality between source coding and channel coding and its extension to the side information case. IEEE Trans Inform Theor 49(5):1181–1203MathSciNetzbMATHCrossRefGoogle Scholar
  25. 25.
    Puri R, Majumdar A, Ramchandran K (2007) PRISM: a video coding paradigm with motion estimation at the decoder. IEEE Trans Image Process 16(10):2436–2448MathSciNetCrossRefGoogle Scholar
  26. 26.
    Puri R, Ramchandran K (2002) PRISM: a new robust video coding architecture based on distributed compression principles. In: 40th Allerton Conference on Communication, Control, and Computing, Allerton, IL, October 2002.Google Scholar
  27. 27.
    Slepian D, Wolf JK (1973) Noiseless coding of correlated information sources. IEEE Trans Inform Theor 19(4):471–480MathSciNetzbMATHCrossRefGoogle Scholar
  28. 28.
    Slowack J, Skorupa J, Deligiannis N, Lambert P, Munteanu A, Walle RVd (2011) Distributed video coding with feedback channel constraints. accepted to IEEE Transactions on Circuit and Systems for Video TechnologyGoogle Scholar
  29. 29.
    Varodayan D, Aaron A, Girod B (2006) Rate-adaptive codes for distributed source coding. Signal Process 86:3123–3130, ElsevierzbMATHCrossRefGoogle Scholar
  30. 30.
    Weinberger MJ, Seroussi G, Sapiro G (2000) The LOCO-I lossless image compression algorithm: principles and standardization into JPEG-LS. IEEE Trans Image Process 9(8):1309–1324CrossRefGoogle Scholar
  31. 31.
    Wiegand T, Sullivan GJ, Bjøntegaard G, Luthra A (2003) Overview of the H.264/AVC video coding standard. IEEE Trans Circ Syst Video Tech 13(7):560–576CrossRefGoogle Scholar
  32. 32.
    Wyner AD, Ziv J (1976) The rate-distortion function for source coding with side information at the decoder. IEEE Trans Inform Theor 22(1):1–10MathSciNetzbMATHCrossRefGoogle Scholar
  33. 33.
    Xiong Z, Liveris A, Cheng S (2004) Distributed source coding for sensor networks. IEEE Signal Process Mag 21:80–94CrossRefGoogle Scholar
  34. 34.
    Xu Q, Stankovic V, Xiong Z (2007) Distributed joint source-channel coding of video using raptor codes. IEEE J Sel Area Comm 25(4):851–861CrossRefGoogle Scholar
  35. 35.
    Zamir R (1996) The rate loss in the Wyner-Ziv problem. IEEE Trans Inform Theor 42(11):2073–2084zbMATHCrossRefGoogle Scholar
  36. 36.
    Zhang Y, Zhu C, Yap K (2008) A joint source-channel video coding scheme based on distributed source coding. IEEE Trans Multimed 10(8):1648–1656CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Frederik Verbist
    • 1
    • 2
    Email author
  • Nikos Deligiannis
    • 1
    • 2
  • Marc Jacobs
    • 1
    • 2
  • Joeri Barbarien
    • 1
    • 2
  • Peter Schelkens
    • 1
    • 2
  • Adrian Munteanu
    • 1
    • 2
  • Jan Cornelis
    • 1
  1. 1.Department of Electronics and Informatics (ETRO)Vrije Universiteit BrusselBrusselsBelgium
  2. 2.Interdisciplinary Institute for Broadband Technology (IBBT)GhentBelgium

Personalised recommendations