Multimedia Tools and Applications

, Volume 67, Issue 2, pp 433–453 | Cite as

Ant-based service selection framework for a smart home monitoring environment

  • M. Shamim Hossain
  • S. K. Alamgir Hossain
  • Atif Alamri
  • M. Anwar Hossain
Article

Abstract

Selecting ambient media services in a smart home monitoring environment is challenging. Services in such an environment should be ubiquitous, adaptive, and robust with respect to access and delivery. Many different techniques exist for selecting services in smart environments, for example, dynamic programming, genetic algorithms, and fuzzy logic. However, existing approaches to service selection fail to address the dynamic nature of the services and the requirement of considering the user context and user satisfaction. We address this issue by proposing an ant-inspired service selection framework based on dynamic user preferences and satisfaction. This ant-inspired approach is robust to failures and adaptive to dynamic context. The proposed framework enables different categories of residents (e.g., elderly people, fathers with children, mothers, and so on) to access various media services in such a way that their experiences are optimized with regard to their surrounding environment. Experimental results demonstrate the viability of the proposed framework.

Keywords

Smart environment Ambient media service Ant based selection Service composition 

References

  1. 1.
    Aarts E (2004) Ambient intelligence: a multimedia perspective. IEEE Multimed 11(1):12–19. doi:10.1109/MMUL.2004.1261101 CrossRefGoogle Scholar
  2. 2.
    Boehm B (1996) Anchoring the software process. IEEE Softw 13:73–82CrossRefGoogle Scholar
  3. 3.
    Cao L, Li M, Cao J (2005) Cost-driven web service selection using genetic algorithm. In: Deng X, Ye Y (eds) Internet and network economics. Lecture notes in computer science, vol 3828. Springer, Berlin/Heidelberg, pp 906–915CrossRefGoogle Scholar
  4. 4.
    Chiang F, Braun R, Agbinya JI (2007) Self-configuration of network services with biologically inspired learning and adaptation. J Netw Syst Manag 15(1):87–116CrossRefGoogle Scholar
  5. 5.
    Di Caro G, Dorigo M (1998) Antnet: distributed stigmergetic control for communications networks. Artif Intell Res 9:317–365MATHGoogle Scholar
  6. 6.
    Gantner Z, Rendle S, Lars ST (2010) Factorization models for context-/time-aware movie recommendations. In: Proceedings of the workshop on context-aware movie recommendation, CAMRa ’10. ACM, New York, NY, USA, pp 14–19CrossRefGoogle Scholar
  7. 7.
    Gao Y, Na J, Zhang B, Yang L, Gong Q (2006) Optimal web services selection using dynamic programming. In: 11th IEEE symposium on computers and communications, 2006. ISCC ’06. Proceedings, pp 365–370Google Scholar
  8. 8.
    Georgantas N, Mokhtar S, Bromberg Y, Issarny V, Kalaoja J, Kantarovitch J, Gerodolle A, Mevissen R (2005) The amigo service architecture for the open networked home environment. In: 5th Working IEEE/IFIP Conference on Software Architecture, 2005. WICSA 2005, pp 295–296Google Scholar
  9. 9.
    Golbeck J (2006) Generating predictive movie recommendations from trust in social networks. In: Stlen K, Winsborough W, Martinelli F, Massacci F (eds) Trust management. Lecture notes in computer science, vol 3986. Springer, Berlin/Heidelberg, pp 93–104CrossRefGoogle Scholar
  10. 10.
    Hong DWK, Hong CS (2003) A qos management framework for distributed multimedia systems. Int J Netw Manage 13(2):115–127CrossRefGoogle Scholar
  11. 11.
    Hossain MS, El Saddik A (2010) Qos requirement in the multimedia transcoding service selection process. IEEE Trans Instrum Meas 59(6):1498–1506CrossRefGoogle Scholar
  12. 12.
    Hossain M, Atrey P, El Saddik A (2008) Gain-based selection of ambient media services in pervasive environments. Mob Netw Appl 13:599–613CrossRefGoogle Scholar
  13. 13.
    Hossain M, Parra J, Atrey P, El Saddik A (2009) A framework for human-centered provisioning of ambient media services. Multimed Tools Appl 44:407–431CrossRefGoogle Scholar
  14. 14.
    Hossain MS, Alamri A, El Saddik A (2009) A biologically-inspired framework for multimedia service management in ubiquitous environment. Concurr Comput: Practice and Experience 21(11):1450–1466CrossRefGoogle Scholar
  15. 15.
    Hossain SA, Rahman ASMM, El Saddik A (2011) Fusion of face networks through the surveillance of public spaces to address sociological security recommendations. In: IEEE international conference on multimedia & expo (ICME). Advances in automated multimedia surveillance for public safety (AAMS-PS), Barcelona, SpainGoogle Scholar
  16. 16.
    Intel Corporation (2011) Open source computer vision library. Tech. rep., Intel. http://opencv.willowgarage.com/wiki/. Last accessed Feb 2011
  17. 17.
    Likert R (1932) A technique for the measurement of attitudes. Arch Psychol 140:1–55Google Scholar
  18. 18.
    Loke SW, Krishnaswamy S, Naing TT (2005) Service domains for ambient services: concept and experimentation. Mob Netw Appl 10:395–404CrossRefGoogle Scholar
  19. 19.
    Lugmayr A (2007) Ambience, ambience, ambience—what are ambient media? In: Interactive TV: a shared experience, TISCP adjunct proceedings of EuroITV 2007, vol. 35. TICSP, TICSP, Amsterdam. http://www.cs.tut.fi/~lartur/euroitv07_ajp/main.htm
  20. 20.
    Mingkhwan A, Fergus P, Abuelmaatti O, Merabti M, Askwith B, Hanneghan M (2006) Dynamic service composition in home appliance networks. Multimed Tools Appl 29:257–284CrossRefGoogle Scholar
  21. 21.
    Mokhtar S, Georgantas N, Issarny V (2006) Cocoa: conversationbased service composition for pervasive computing environments. In: 2006 ACS/IEEE international conference on pervasive services, pp 29–38Google Scholar
  22. 22.
    Musunoori S, Horn G (2006) Ant-based approach to the quality aware application service partitioning in a grid environment. In: In Proc. IEEE congress on evolutionary computation, pp 2604–2611Google Scholar
  23. 23.
    Said A, Berkovsky S, De Luca EW (2010) Putting things in context: challenge on context-aware movie recommendation. In: Proceedings of the workshop on context-aware movie recommendation, CAMRa ’10. ACM, New York, NY, USA, pp 2–6CrossRefGoogle Scholar
  24. 24.
    Shirehjini AAN A generic upnp architecture for ambient intelligence meeting rooms and a control point allowing for integrated 2d and 3d interaction. In: Proceedings of the 2005 joint conference on smart objects and ambient intelligence: innovative context-aware services: usages and technologies, sOc-EUSAI ’05. ACM, New York, NY, USA, pp 207–212 (2005)CrossRefGoogle Scholar
  25. 25.
    Tsesmetzis D., Roussaki I, Sykas E (2008) Qos-aware service evaluation and selection. Eur J Oper Res 191(3):1101–1112MathSciNetMATHCrossRefGoogle Scholar
  26. 26.
    Ubisense (2011) Ubisense location driven training. Tech. Rep. http://www.ubisense.net/. Last accessed Jan 2011
  27. 27.
    VLC (2010) Video Lan. Tech. Rep. http://www.videolan.org/vlc/. Accessed Dec 2010
  28. 28.
    Wikipedia (2011) Radio frequency identification. Tech. Rep. http://en.wikipedia.org/wiki/Radio-frequency_identification. Last accessed Feb 2011
  29. 29.
    X10 (2010) Tech. Rep. http://www.x10.com/homepage.htm. Last accessed Dec 2010
  30. 30.
    Xu D, Nahrstedt K (2002) Finding service paths in a media service proxy network. In: Multimedia computing networking (MMCN’02), San Jose, California, USAGoogle Scholar
  31. 31.
    Yu T, Zhang Y, Lin KJ (2007) Efficient algorithms for web services selection with end-to-end qos constraints. ACM Trans Web (TWEB) 1(1):1–26CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • M. Shamim Hossain
    • 1
  • S. K. Alamgir Hossain
    • 2
  • Atif Alamri
    • 1
  • M. Anwar Hossain
    • 1
  1. 1.College of Computer and Information SciencesKing Saud UniversityRiyadhSaudi Arabia
  2. 2.DiscoverLabUniversity of OttawaOttawaCanada

Personalised recommendations