Multimedia Tools and Applications

, Volume 64, Issue 2, pp 331–344 | Cite as

SOM and fuzzy based color image segmentation

  • Ahmad Khan
  • M. Arfan Jaffar
  • Tae-Sun Choi


Spatial information enhances the quality of clustering which is not utilized in the conventional FCM. Normally fuzzy c-mean (FCM) algorithm is not used for color image segmentation and also it is not robust against noise. In this paper, we presented a modified version of fuzzy c-means (FCM) algorithm that incorporates spatial information into the membership function for clustering of color images A progressive technique based on SOM is used to automatically find the number of optimal clusters. The results show that our technique outperforms state-of-the art methods.


Self Organizing Map (SOM) Segmentation FCM Cluster center 



This work (2011-0015740) was supported by Mid-career Researcher Program through NRF grant funded by the MEST.


  1. 1.
    Beucher S, Meyer F (1993) The morphological approach to segmentation: the watershed transformation. Math Morphol Image Process 34:433–481Google Scholar
  2. 2.
    Boykov Y, Jolly M (2001) Interactive graph cuts for optimal boundary region segmentation of objects in N-D images. IEEE Int Conf Comput Vis 1:105–112Google Scholar
  3. 3.
    Carson C, Belongie S, Greenspan H, Malik J (2002) Blobworld: image segmentation using expectation maximization and its application to image querying. IEEE Trans Pattern Anal Mach Intell 24(8):1026–1038CrossRefGoogle Scholar
  4. 4.
    Chong RM, Tanaka T (2010) Motion blur identification using maxima locations for blind colour image restoration. JoC 1(1):49–56Google Scholar
  5. 5.
    Comaniciu D, Meer P (1999) “Mean shift analysis and applications.” in Proc. IEEE Int. Conf. Computer Vision, vol. 2, pp. 1197–1203Google Scholar
  6. 6.
    Comaniciu D, Meer P (2002) Mean shift: a robust approach toward feature space analysis. IEEE Trans Pattern Anal Mach Intell 24(5):603–619CrossRefGoogle Scholar
  7. 7.
    Duda R, Hart P, Stork D (2001) Pattern classification, 2nd edn. Wiley, HobokenMATHGoogle Scholar
  8. 8.
    Edge Detection and Image Segmentation (EDISON) System robust image understanding laboratory at Rutgers University [Online]. Available:
  9. 9.
    Felzenszwalb P, Huttenlocher D (2004) Efficient graph-based image segmentation. Int J Comput Vis 59(2):167–181CrossRefGoogle Scholar
  10. 10.
    Ilea DE, Whelan PF (2008) CTex—an adaptive unsupervised segmentation algorithm based on colour-texture coherence. IEEE Trans Image Process 17(10):1926–1939MathSciNetCrossRefGoogle Scholar
  11. 11.
    Kohonen T (2001) Self-Organising maps, Springer series in information sciences, vol. 30, 3rd edn. Springer Verlang, Berlin Heidelberg, New YorkGoogle Scholar
  12. 12.
    Kolmogorov V, Zabih R (2004) What energy functions can be minimized via graph cuts? IEEE Trans Pattern Anal Mach Intell 26(2):147–159CrossRefGoogle Scholar
  13. 13.
    Li Y, Sun J, Tang CK, Shum HY (2004) Lazy snapping. ACM Trans Graph 23(3):303–308CrossRefGoogle Scholar
  14. 14.
    Loo PK, Tan CL (2004) Adaptive region growing color segmentation for text using irregular pyramid. Int Workshop Doc Anal Syst 3163:264–275Google Scholar
  15. 15.
    Lucchese L, Mitra SK (2001) Color image segmentation: a state of the art survey. Proc Indian Natl Sci Acad Image Process Vis Pattern Recogn 67(2):207–221Google Scholar
  16. 16.
    Martin D, Fowlkes C, Tal D, Malik J (2001) “A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics.” in Proc. IEEE Int. Conf. Computer Vision, vol.2, pp. 416–423, JulGoogle Scholar
  17. 17.
    Mortensen E, Barrett W (1998) Interactive segmentation with intelligent scissors. Graph Model Image Process 60(5):349–384MATHCrossRefGoogle Scholar
  18. 18.
    Mukhopadhyay A, Maulik U, Bandyopadhyay S (2009) “multiobjective genetic algorithm-based fuzzy clustering of categorical attributes.” IEEE Trans Evol Comput 13(5), OctoberGoogle Scholar
  19. 19.
    Ponomarchuk Y, Seo D-W (2010) Intrusion detection based on traffic analysis and fuzzy inference system in wireless sensor networks. JoC 1(1):35–42Google Scholar
  20. 20.
    Rother C, Kolmogorov V, Blake A (2004) Grabcut interactive foreground extraction using iterated graphcuts. ACM Trans Graph 23(3):309–314CrossRefGoogle Scholar
  21. 21.
    Sathappan OL, Chitra P, Venkatesh P, Prabhu M (2010) Modified genetic algorithm for multiobjective task scheduling on heterogeneous computing system. IJITCC 1(2):146–158CrossRefGoogle Scholar
  22. 22.
    Shiand J, Malik J (2000) Normalized cuts and image segmentation. IEEE Trans Pattern Anal Mach Intell 22(8):888–905CrossRefGoogle Scholar
  23. 23.
    Tan KS, MatIsa NA (2011) Color image segmentation using histogram thresholding Fuzzy C-means hybrid approach. Elsevier Pattern Recogn 44:1–15MATHCrossRefGoogle Scholar
  24. 24.
    Tsekouras GE, Papageorgiou D, Kotsiantis S, Kalloniatis C, Pintelas P (2004) Fuzzy clustering of categorical attributes and its use in analyzing cultural data. Int J Comput Intell 1(2):147–151Google Scholar
  25. 25.
    Tu Z (2005) “An integrated frame work for image segmentation and perceptual grouping.” in Proc. Int. Conf. Computer Vision, pp. 670–677Google Scholar
  26. 26.
    Vincent L, Soille P (1991) Watersheds in digital spaces: an efficient algorithm based on immersion simulations. IEEE Trans Pattern Anal Mach Intell 13(6):583–598CrossRefGoogle Scholar
  27. 27.
    Yang AY, Wright J, Sastry SS, Ma Y. Unsupervised segmentation of natural images via lossy data compression EECS Dept., Univ. California, Berkeley, 2006, Tech. Rep. UCB/EECS-2006–195Google Scholar
  28. 28.
    Ye Y, Li X, Wu B, Li Y (2010) A comparative study of feature weighting methods for document co-clustering. IJITCC 1(2):206–220CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.National University of Computer & Emerging SciencesIslamabadPakistan
  2. 2.Gwangju Institute of Science & TechnologyGwangjuKorea

Personalised recommendations