Multimedia Tools and Applications

, Volume 62, Issue 2, pp 507–543 | Cite as

Multiple perspective interactive search: a paradigm for exploratory search and information retrieval on the web

Article

Abstract

The World Wide Web (WWW) represents the largest and arguably the most complex repository of content at our current state of technological development. Information on the web is represented using a variety of media, with a (current) predominance of text- and images-based data and increasing presence of other media such as video and audio. The complexity and heterogeneity of the information implies that the associated semantics is often user-dependent and emergent. Thus, there is a need to develop novel paradigms for web-based user-data interactions that emphasize user context and interactivity with the goal of facilitating exploration, interpretation, retrieval, and assimilation of information. This article presents a novel presentation-interaction paradigm for exploratory web search which allows simultaneous and semantically correlated presentation of query results from different semantic perspectives. Users can explore the results either using a specific perspective or through a combination of perspectives via highly-intuitive yet powerful interaction operators. In the proposed paradigm, hits obtained from executing a query are first analyzed to determine latent content-based correlations between the pages. Next, the pages are analyzed to extract different types of perceptual and informational cues. This information is used to organize and present the results through an interactive and reflective user interface which supports both exploration and search. Experimental investigations, many of which are conducted in comparative settings, analyze the proposed approach in query-retrieval scenarios involving complex information goals. These results demonstrate the efficacy of the proposed approach and provide important insights for the development of the next-generation of interfaces for web-search.

Keywords

Exploratory web search Human-computer interaction Information retrieval Experiential interfaces Direct manipulation Multiple perspective search Information visualization Spatial search Temporal search Multimedia information systems Information goal User-media interaction 

References

  1. 1.
    Ahlberg C, Shneiderman B (1994) Visual information seeking: tight coupling of dynamic query filters with starfield displays. In: Proceedings of the SIGCHI conference on Human factors in computing systems: celebrating interdependence (CHI’94). ACM, New York, NY, USA, pp. 313–317Google Scholar
  2. 2.
    Amitay E, Har’El N, Sivan R, Soffer A (2004) Web-a-where: Geotagging Web Content. In: Proceedings of the 27th annual international ACM SIGIR conference on Research and development in information retrieval (SIGIR’04). ACM, New York, NY, USA, pp. 273–280Google Scholar
  3. 3.
    Cai D, He X, Li Z, Ma W-Y, Wen J-R (2004) Hierarchical Clustering of WWW image search results using visual, textual, and link information. In: Proceedings of the 12th annual ACM international conference on Multimedia (MULTIMEDIA’04). ACM, New York, NY, USA, pp. 952–959Google Scholar
  4. 4.
    Carpineto C, Osinski S, Romano G, Weiss D (2009) A survey of Web clustering engines. ACM Computing Surveys Vol. 41, No. 3, Article 17Google Scholar
  5. 5.
    Chau M (2011) Visualizing web search results using glyphs: design and evaluation of a flower metaphor. ACM Transactions on Management Information Systems Vol. 2, No. 1, Article 2Google Scholar
  6. 6.
    Dumais S, Cutrell E, Chen H (2001) Optimizing search by showing results in context. In: Proceedings of the SIGCHI conference on Human factors in computing systems (CHI’01). ACM, New York, NY, USA, pp. 277–284Google Scholar
  7. 7.
    Ferragina P, Gulli A (2005) “A personalized search engine based on web-snippet hierarchical clustering.” In: Special interest tracks and posters of the 14th international conference on World Wide Web (WWW’05). ACM, New York, NY, USA, pp. 801–810Google Scholar
  8. 8.
    Gemmell J, Bell G, Lueder R, Drucker S, Wong C (2002) MyLifeBits: fulfilling the Memex vision. In: Proceedings of the tenth ACM international conference on Multimedia (MULTIMEDIA’02). ACM, New York, NY, USA, 235–238Google Scholar
  9. 9.
    Grosky W, Sreenath DV, Fotouhi F, Wietrzyk V (2006) The multimedia semantic Web. Int J Comput Sci Eng 2(5/6):326–340Google Scholar
  10. 10.
    Havre S, Hetzler B, Nowell L (2000) ThemeRiver: visualizing thematic changes in large document collections. IEEE Trans Vis Comput Graph 8(1):9–20CrossRefGoogle Scholar
  11. 11.
    Hearst MA (1995) TileBars: visualization of term distribution information in full text information access. In: Proceedings of the SIGCHI conference on human factors in computing systems (CHI’95). ACM Press/Addison-Wesley Publishing Co., New York, NY, USA, pp. 59–66Google Scholar
  12. 12.
    Hoeber O, Yang XD (2006) The visual exploration of web search results using HotMap. In: Proceedings of the conference on Information Visualization (IV’06). IEEE Computer Society, Washington, DC, USA, pp. 157–165Google Scholar
  13. 13.
    Hoeber O, Yang XD (2008) Evaluating WordBars in exploratory web search scenarios. Inf Process Manag 44(2):485–510CrossRefGoogle Scholar
  14. 14.
    Hsu YW, Moon N, Singh R (2006) Designing interaction paradigms for web-information search and retrieval. In: Proceedings of the 2006 IEEE/WIC/ACM International Conference on Web Intelligence (WI’06). IEEE Computer Society, Washington, DC, USA, pp. 815–822Google Scholar
  15. 15.
    Jain R (2003) Experiential computing. Commun ACM 46(7):48–55CrossRefGoogle Scholar
  16. 16.
    Kammerer Y, Gerjets P (2010) How the interface design influences users’ spontaneous trustworthiness evaluations of web search results: comparing a list and a grid interface. In: Proceedings of the 2010 Symposium on Eye-Tracking Research and Applications (ETRA’10). ACM, New York, NY, USA, pp. 299–306Google Scholar
  17. 17.
    Kan MY (2004) Web page categorization without the web page. In: Proceedings of the 13th international World Wide Web conference on Alternate track papers \& posters (WWW Alt.’04). ACM, New York, NY, USA, pp. 262–263Google Scholar
  18. 18.
    Kruse P, Naujoks A, Roesner D, Kunze M (2005) Clever search: a WordNet based wrapper for internet search engines, computing research repository, vol. abs/cs/050Google Scholar
  19. 19.
    Langer L, Frøkjaer E (2008) Improving web search transparency by using a Venn diagram interface. In: Proceedings of the 5th Nordic conference on Human-computer interaction: building bridges (NordiCHI’08). ACM, New York, NY, USA, pp. 249–256Google Scholar
  20. 20.
    Lew MS, Sebe N, Djeraba C, Jain R (2006) Content-based multimedia information retrieval: state of the art and challenges. ACM Trans Multimed Comput Comm Appl 2(1):1–19CrossRefGoogle Scholar
  21. 21.
    Lin X (1992) Visualization for the document space. In: Proceedings of the 3rd conference on Visualization’92 (VIS’92). IEEE Computer Society Press, Los Alamitos, CA, USA, pp. 274–281Google Scholar
  22. 22.
    Marchionini G (2006) Exploratory search: from finding to understanding. Comm ACM 49(4):41–46CrossRefGoogle Scholar
  23. 23.
    Marcus A, Gould EW (2000) Crosscurrents: cultural dimensions and global web user-interface design. Interactions 7(4):32–46CrossRefGoogle Scholar
  24. 24.
    Mukherjea S, Cho J (1999) Automatically determining semantics for world wide web multimedia information retrieval. J Vis Lang Comput 10(6):585–606CrossRefGoogle Scholar
  25. 25.
    Nowell LT, France RK, Hix D, Heath LS, Fox EA (1996) Visualizing search results: some alternatives to query-document similarity. In: Proceedings of the 19th annual international ACM SIGIR conference on Research and development in information retrieval (SIGIR’96). ACM, New York, NY, USA, pp. 67–75Google Scholar
  26. 26.
    Park H, Myaeng S-H, Jang G, Choi J, Jo S, Roh H-C (2008) SketchBrain: an interactive information seeking interface for exploratory search. In: Proceedings International Workshop on Human-Computer Interaction and Information Retrieval (HCIR 2008), pp. 53–56Google Scholar
  27. 27.
    Perer A, Shneiderman B (2009) Integrating statistics and visualization for exploratory power: from long-term case studies to design guidelines. IEEE Comput Graph Appl 29(3):39–51CrossRefGoogle Scholar
  28. 28.
    Pirolli P, Card S (1999) Information foraging. Psychol Rev 106(4):643–675CrossRefGoogle Scholar
  29. 29.
    Plaisant C, Milash B, Rose A, Widoff S, Shneiderman B (1996) LifeLines: visualizing personal histories. In: Proceedings of the SIGCHI conference on Human factors in computing systems: common ground (CHI’96), ACM, New York, NY, USA, 221–227Google Scholar
  30. 30.
    Porter MF (1980) An algorithm for suffix stripping. Program 14(3):130–137CrossRefGoogle Scholar
  31. 31.
    Radev D, Fan W (2000) Automatic summarization of search engine hit lists. In: Proceedings of the ACL-2000 workshop on Recent advances in natural language processing and information retrieval: held in conjunction with the 38th Annual Meeting of the Association for Computational Linguistics–Volume 11 (RANLPIR’00), vol. 11. Association for Computational Linguistics, Stroudsburg, PA, USA, 99–109Google Scholar
  32. 32.
    Resnik M, Maldonado C, Santos J, Lergier R (2001) Modeling online search behavior using alternative output structures. In: Proceedings of the Human Factors and Ergonomics Society 45th Annual Conference, Minneapolis, MN, USA, pp. 1166–1171Google Scholar
  33. 33.
    Roberts J, Boukhelifa N, Rogers P (2002) Multiform glyph based web search result visualization. In: Proceedings of the 6th IEEE International Conference on Information Visualization, 2002, IEEE Press. pp. 549–554Google Scholar
  34. 34.
    Rose E, Levinson D (2004) Understanding user goals in web search. In: Proceedings of the 13th international conference on World Wide Web (WWW’04). ACM, New York, NY, USA, 13–19Google Scholar
  35. 35.
    Salmeron L, Gil L, Braten I, Stømsø H (2010) Comprehension effects of signalling relationships between documents in search engines. Comput Hum Behav 26(3):419–426CrossRefGoogle Scholar
  36. 36.
    Salton G, Buckley C (1988) Term weighting approaches in automatic text retrieval. Inf Process Manag 24(5):513–523, August 1988CrossRefGoogle Scholar
  37. 37.
    Santini S, Gupta A, Jain R (2001) Emergent semantics through interaction in image databases. IEEE Trans Knowl Data Eng 13(3):337–351CrossRefGoogle Scholar
  38. 38.
    Singh R, Hsu YW (2007) Analysis of usage patterns in experiential multiple perspective web-search. In: Proceedings of the 15th international conference on Multimedia (MULTIMEDIA’07). ACM, New York, NY, USA, 569–572Google Scholar
  39. 39.
    Singh R, Hsu YA-W, Sun WC, Chiture D, Yan L (2005) Rethinking the presentation of results from web search. In: Proceedings of the IEEE International Conference on Multimedia and Expo. pp. 1492–1495Google Scholar
  40. 40.
    Singh R, Jain R (2006) From information centric to experiential environments. In: Goldin D, Smolka S, Wegner P (eds) Interactive computation: the new paradigm. Springer Verlag, pp. 323–351. ISBN: 978–3540346661Google Scholar
  41. 41.
    Singh R, Li Z, Kim P, Pack D, Jain R (2004) Event-based modeling and processing of digital media. In: Proceedings of the 1st international workshop on Computer vision meets databases (CVDB’04). ACM, New York, NY, USA, pp. 19–26Google Scholar
  42. 42.
    Singh R, Pinzon JC (2007) Study and analysis of user behavior and usage patterns in a unified personal multimedia information environment. In: Proceedings of the IEEE International Conference on Multimedia and Expo, pp. 1031–1034, 2007Google Scholar
  43. 43.
    Smeulders AWM, Worring M, Santini S, Gupta A, Jain R (2000) Content based image retrieval at the end of the early years. IEEE Trans Pattern Anal Mach Intell 22(12):1349–1380CrossRefGoogle Scholar
  44. 44.
    Snoek CGM, Worring M (2009) Concept-based video retrieval. Found Trends Inform Retrieval 2(4):215–322CrossRefGoogle Scholar
  45. 45.
    Strehl A (2002) Relationship-based clustering and cluster ensembles for high-dimensional data mining, PhD Dissertation, Department of Electrical and Computer Engineering, University of Texas at AustinGoogle Scholar
  46. 46.
    Teevan J, Alvarado C, Ackerman MS, Karger DR (2004) The perfect search engine is not enough: a study of orienteering behavior in directed search. In: Proceedings of the SIGCHI conference on Human factors in computing systems (CHI’04). ACM, New York, NY, USA, 415–422Google Scholar
  47. 47.
    Toyama K, Logan R, Roseway A, Anandan P (2003) Geographic location tags on digital images. In: Proceedings of the eleventh ACM international conference on Multimedia (MULTIMEDIA’03). ACM, New York, NY, USA, 156–166Google Scholar
  48. 48.
    Vessey I, Galletta D (1991) Cognitive fit: an empirical study of information acquisition. Inf Syst Res 2:63–84CrossRefGoogle Scholar
  49. 49.
    Wang X-J, Ma W-Y, He Q-C, Li X (2004) Grouping web image search result. In: Proceedings of the 12th annual ACM international conference on Multimedia (MULTIMEDIA’04). ACM, New York, NY, USA, 436–439Google Scholar
  50. 50.
    White RW, Drucker SM, Marchionini G, Hearst M, Schraefel MC (2007) Exploratory search and HCI: designing and evaluating interfaces to support exploratory search interaction. In: Proceedings of CHI’07 extended abstracts on Human factors in computing systems (CHI EA’07). ACM, New York, NY, USA, pp. 2877–2880Google Scholar
  51. 51.
    White RW, Roth RA (2009) Exploratory search: beyond the query-response paradigm. Morgan and Claypool, San RafaelGoogle Scholar
  52. 52.
    Wilson ML, Kules B, Schraefel MC, Shneiderman B (2010) From keyword search to exploration: designing future search interfaces for the web. Found Trends Web Sci 2(1):1–97MATHCrossRefGoogle Scholar
  53. 53.
    Wise JA, Thomas JJ, Pennock K, Lantrip D, Pottier M, Schur A, Crow V (1999) Visualizing the non-visual: spatial analysis and interaction with information from text documents. In: Card SK, Mackinlay JD, Shneiderman B (eds) Reading in information visualization: using vision to think. Morgan Kaufmann, San Francisco, pp 442–445Google Scholar
  54. 54.
    Woodruff A, Faulring A, Rosenholtz R, Morrsion J, Pirolli P (2001) Using thumbnails to search the Web. In: Proceedings of the SIGCHI conference on Human factors in computing systems (CHI’01). ACM, New York, NY, USA, 198–205Google Scholar
  55. 55.
    Yee K-P, Swearingen K, Li K, Hearst M (2003) Faceted metadata for image search and browsing. In: Proceedings of the SIGCHI conference on Human factors in computing systems (CHI’03). ACM, New York, NY, USA, 401–408Google Scholar
  56. 56.
    Zamir O, Etzioni O (1999) Grouper: a dynamic clustering interface to Web search results. In: Enslow PH Jr (ed) Proceedings of the eighth international conference on World Wide Web (WWW’99). Elsevier North-Holland, Inc., New York, pp 1361–1374Google Scholar
  57. 57.
    Zeng H-J, He Q-C, Chen Z, Ma W-Y, Ma J (2004) Learning to cluster web-search results. In: Proceedings of the 27th annual international ACM SIGIR conference on Research and development in information retrieval (SIGIR’04). ACM, New York, NY, USA, 210–217Google Scholar
  58. 58.
    Zubizarreta Á, Fuente P, Cantera JM, Arias M, Cabrero J, García G, Llamas C, Vegas J (2008) A georeferencing multistage method for locating geographic context in web search. In: Proceeding of the 17th ACM conference on Information and knowledge management (CIKM’08). ACM, New York, NY, USA, pp. 1485–1486Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of Computer ScienceSan Francisco State UniversitySan FranciscoUSA

Personalised recommendations