Multimedia Tools and Applications

, Volume 59, Issue 2, pp 557–577 | Cite as

Sentic Computing for social media marketing

  • Erik CambriaEmail author
  • Marco Grassi
  • Amir Hussain
  • Catherine Havasi


In a world in which millions of people express their opinions about commercial products in blogs, wikis, fora, chats and social networks, the distillation of knowledge from this huge amount of unstructured information can be a key factor for marketers who want to create an image or identity in the minds of their customers for their product, brand or organization. Opinion mining for product positioning, in fact, is getting a more and more popular research field but the extraction of useful information from social media is not a simple task. In this work we merge AI and Semantic Web techniques to extract, encode and represent this unstructured information. In particular, we use Sentic Computing, a multi-disciplinary approach to opinion mining and sentiment analysis, to semantically and affectively analyze text and encode results in a semantic aware format according to different web ontologies. Eventually we represent this information as an interconnected knowledge base which is browsable through a multi-faceted classification website.


AI Semantic Web Knowledge base management NLP Opinion mining and sentiment analysis 


  1. 1.
    Alm C, Roth D, Sproat R (2005) Emotions from text: machine learning for text-based emotion prediction. In: HLT/EMNLP, VancouverGoogle Scholar
  2. 2.
    Cambria E, Hussain A, Havasi C, Eckl C (2009) AffectiveSpace: blending common sense and affective knowledge to perform emotive reasoning. In: WOMSA at CAEPIA, SevilleGoogle Scholar
  3. 3.
    Cambria E, Hussain A, Havasi C, Eckl C (2009) Common sense computing: from the society of mind to digital intuition and beyond. In: LNCS, vol 5707. Springer, Berlin, pp 252–259Google Scholar
  4. 4.
    Cambria E, Hussain A, Havasi C, Eckl C (2010) Sentic computing: exploitation of common sense for the development of emotion-sensitive systems. In: LNCS, vol 5967. Springer, Berlin, pp 148–156 (2010)Google Scholar
  5. 5.
    Cambria E, Hussain A, Havasi C, Eckl C (2010) SenticSpace: visualizing opinions and sentiments in a multi-dimensional vector space. In: LNAI, vol 6279. Springer, Berlin, pp 385–393Google Scholar
  6. 6.
    Eckart C, Young G (1936) The approximation of one matrix by another of lower rank. Psychometrika 1(3):211–218zbMATHCrossRefGoogle Scholar
  7. 7.
    Elliott C (1992) The affective reasoner: a process model of emotions in a multi-agent system. Technical Report no. 32, The Institute for the Learning SciencesGoogle Scholar
  8. 8.
    Fellbaum C (1998) WordNet: an electronic Lexical database. MIT Press, CambridgezbMATHGoogle Scholar
  9. 9.
    Goertzel B, Silverman K, Hartley C, Bugaj S, Ross M (2000) The baby webmind project. In: AISB, BirminghamGoogle Scholar
  10. 10.
    Grassi M (2009) Developing HEO human emotion ontology. In: LNCS, vol 5707. Springer, Berlin, pp 244–251Google Scholar
  11. 11.
    Havasi C, Speer R, Alonso J (2007) ConceptNet 3: a flexible, multilingual semantic network for common sense knowledge. In: RANLP, BorovetsGoogle Scholar
  12. 12.
    Havasi C, Speer R, Pustejovsky J, Lieberman H (2009) Digital intuition: applying common sense using dimensionality reduction. IEEE Intell Syst 24(4):24–35CrossRefGoogle Scholar
  13. 13.
    Hu M, Liu B (2004) Mining opinion features in customer reviews. In: AAAI, San JoseGoogle Scholar
  14. 14.
    Minsky M (2006) The emotion machine. Simon and Schuster, New YorkGoogle Scholar
  15. 15.
    Nicolov N, Salvetti F, Liberman M, Martin J (eds) (2006) AAAI symposium on computational approaches to analysing weblogs. AAAI, Menlo ParkGoogle Scholar
  16. 16.
    Pang B, Lee L (2004) A sentimental education: sentiment analysis using subjectivity summarization based on minimum cuts. In: ACL, BarcelonaGoogle Scholar
  17. 17.
    Pang B, Lee L (2008) Opinion mining and sentiment analysis. In: Foundations and trends in information retrieval, vol 2, pp 1–135Google Scholar
  18. 18.
    Pang B, Lee L, Vaithyanathan S (2002) Thumbs up? Sentiment classication using machine learning techniques. In: EMNLP, PhiladelphiaGoogle Scholar
  19. 19.
    Plutchik R (2001) The nature of emotions. Am Sci 89(4):344–350Google Scholar
  20. 20.
    Salzman M, Matathia I, O’Reilly A (2003) Buzz: harness the power of influence and create demand. Wiley, New YorkGoogle Scholar
  21. 21.
    Somasundaran S, Wiebe J, Ruppenhofer J (2008) Discourse level opinion interpretation. In: COLING, ManchesterGoogle Scholar
  22. 22.
    Sood S, Vasserman L (2009) Esse: exploring mood on the Web. In: ICWSM, SeattleGoogle Scholar
  23. 23.
    Sood S, Owsley S, Hammond K, Birnbaum L (2007) Reasoning through search: a novel approach to sentiment classification. In: WWW, BanffGoogle Scholar
  24. 24.
    Strapparava C, Valitutti A (2004) WordNet-Affect: an affective extension of WordNet. In: LREC, LisbonGoogle Scholar
  25. 25.
    Turney P (2002) Thumbs up or thumbs down? Semantic orientation applied to unsupervised classification of reviews. In: ACL, PhiladelphiaGoogle Scholar
  26. 26.
    Wall M, Rechtsteiner A, Rocha L (2003) Singular value decomposition and principal component analysis. In: Berrar D et al (eds) A practical approach to microarray data analysis. Kluwer, Norwell, pp 91–109CrossRefGoogle Scholar
  27. 27.
    Wiebe J, Wilson T, Claire C (2005) Annotating expressions of opinions and emotions in language. Lang Resour Eval 2(3) 39:165–210CrossRefGoogle Scholar
  28. 28.
    Wilson T, Wiebe J, Hoffmann P (2005) Recognizing contextual polarity in phrase-level sentiment analysis. In: HLT-EMNLP, VancouverGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Erik Cambria
    • 1
    Email author
  • Marco Grassi
    • 2
  • Amir Hussain
    • 1
  • Catherine Havasi
    • 3
  1. 1.Department of Computing Science and MathematicsUniversity of StirlingStirlingUK
  2. 2.Department of Biomedical, Electronic and Telecommunication EngineeringUniversitá Politecnica delle MarcheAnconaItaly
  3. 3.MIT Media LaboratoryMassachusetts Institute of TechnologyBostonUSA

Personalised recommendations