Advertisement

Multimedia Tools and Applications

, Volume 59, Issue 2, pp 645–672 | Cite as

Towards exploratory video search using linked data

  • Jörg Waitelonis
  • Harald Sack
Article

Abstract

Keyword-based search in general is particularly applicable if the searcher really knows what she is looking for and how to find it, i.e. to know the appropriate keywords to obtain the desired results. But in many cases either the objectives of the searcher are intrinsically fuzzy or she is not aware of the appropriate keywords. One way to solve this problem is to navigate and explore the search space along guided routes. In this paper we show, how Linked Open Data can be adopted to facilitate an exploratory semantic search for video data. We present a prototype implementation of exploratory video search and show how traditional keyword-based search can be augmented by the use of Linked Open Data.

Keywords

Linked Open Data Video search Exploratory search 

References

  1. 1.
    Auer S, Bizer C, Kobilarov G, Lehmann J, Cyganiak R, Ives Z (2008) DBpedia: a nucleus for a web of open data. In: Proc. of 6th int. semantic web conf., 2nd Asian semantic web conf., pp 722–735Google Scholar
  2. 2.
    Berners-Lee T (2006) Linked data. World wide web design issues http://www.w3.org/DesignIssues/LinkedData.html
  3. 3.
    Berners-Lee T, Hendler J, Lassila O (2001) The semantic web a new form of web content that is meaningful to computers will unleash a revolution of new possibilities. Sci Am 284(5):34–43. http://www.sciam.com/article.cfm?id=the-semantic-web&print=true CrossRefGoogle Scholar
  4. 4.
    Bizer C, Cyganiak R, Heath T (2007) How to publish linked data on the web. http://sites.wiwiss.fu-berlin.de/suhl/bizer/pub/LinkedDataTutorial/
  5. 5.
    Bizer C, Heath T, Idehen K, Berners-Lee T (2008) Linked data on the web. In: Proc. of the 17th int. conf. on world wide web, ACM, pp 1265–1266Google Scholar
  6. 6.
    Bollen J, Nelson ML, Geisler G, Araujo R (2007) Usage derived recommendations for a video digital library. J Netw Comput Appl 30(3):1059–1083CrossRefGoogle Scholar
  7. 7.
    Borlund P (2003) The concept of relevance in IR. J Am Soc Inf Sci Technol 54(10):913–925CrossRefGoogle Scholar
  8. 8.
    Borlund P (2003) The IIR evaluation model: a framework for evaluation of interactive information retrieval systems. Inf Res 8(3). http://informationr.net/ir/
  9. 9.
    Brickley D, Miller L (2007) FOAF vocabulary specification 0.91. Online at: http://xmlns.com/foaf/spec/
  10. 10.
    Chen X, Zhang C (2006) An interactive semantic video mining and retrieval platform - Application in transportation surveillance video for incident detection. In: ICDM 2006: proc. of 6th IEEE int. conf. on data mining, IEEE Computer Soc., Hong Kong, pp 129–138Google Scholar
  11. 11.
    Christel MG (2008) Supporting video library exploratory search: when storyboards are not enough. In: Proc. of the int. conf. on content-based image and video retrieval, ACM, New York, NY, USA, pp 447–456CrossRefGoogle Scholar
  12. 12.
    Dan Brickley R (2004) RDF Vocabulary Description Language 1.0: RDF Schema. Tech. rep., W3CGoogle Scholar
  13. 13.
    Day N, Martínez JM (2000) Introduction to MPEG-7. Tech. Rep. ISO/IECT JTC1/SC29/WG11 N3751, International Organisation for StandardisationGoogle Scholar
  14. 14.
    Duke A, Heizmann J (2009) Semantically enhanced search and browse. Semantic Knowledge Management pp 85–102Google Scholar
  15. 15.
    Fouss F, Saerens M (2008) Evaluating performance of recommender systems: an experimental comparison. In: Proceedings of the 2008 IEEE/ACM international joint conference on web intelligence (WIC 2008), pp 735–738Google Scholar
  16. 16.
    Garcia R, Celma O (2005) Semantic integration and retrieval of multimedia metadata. In: Proc. of 4rd int. semantic web conf. knowledge markup and semantic annotation workshop, Galway, IrelandGoogle Scholar
  17. 17.
    Gruber TR (1995) Toward principles for the design of ontologies used for knowledge sharing. Int J Hum-Comput Stud 43(5–6):907–928CrossRefGoogle Scholar
  18. 18.
    Guha R, McCool R, Miller E (2003) Semantic search. In: WWW ’03: proc. of the 12th int. conf. on world wide web, ACM Press, New York, NY, USA, pp 700–709Google Scholar
  19. 19.
    Hu J, Wang G, Lochovsky F, Sun JT, Chen Z (2009) Understanding user’s query intent with wikipedia. In: WWW ’09: proc. of the 18th international conference on world wide web, ACM, New York, NY, USA, pp 471–480CrossRefGoogle Scholar
  20. 20.
    International Organization for Standardization: Information and Documentation – The Dublin Core Metadata Element Set. (2003) ISO 15836Google Scholar
  21. 21.
    Ivan Herman Ralph Swick DB (2004) Resource description framework (RDF). Tech. rep., W3CGoogle Scholar
  22. 22.
    Lo EHS, Pickering MR, Frater MR, Arnold JF (2009) Query by example using invariant features from the double dyadic dual-tree complex wavelet transform. In: Proc. of the ACM int. conf. on image and video retrieval (CIVR ’09), ACM, New York, NY, USA, pp 1–8CrossRefGoogle Scholar
  23. 23.
    Mangold C (2007) A survey and classification of semantic search approaches. In: Int. J. Metadata, Semantics and Ontology, vol 2, pp 23–34Google Scholar
  24. 24.
    Marchionini G (2006) Exploratory search: from finding to understanding. Commun ACM 49(4):41–46CrossRefGoogle Scholar
  25. 25.
    Meij EJ, Bron M, Huurnink B, Hollink L, de Rijke M (2009) Learning semantic query suggestions. In: 8th Int. semantic web conf. (ISWC 2009), SpringerGoogle Scholar
  26. 26.
    Miles A, Bechhofer S (2008) Skos simple knowledge organization system reference. World Wide Web Consortium, Working DraftGoogle Scholar
  27. 27.
    Milne D, Witten IH (2008) Learning to link with wikipedia. In: CIKM ’08: proceeding of the 17th ACM conference on information and knowledge management, ACM, New York, NY, USA, pp 509–518CrossRefGoogle Scholar
  28. 28.
    Oren E, Delbru R, Catasta M, Cyganiak R, Stenzhorn H, Tummarello G (2008) Sindice.com: a document-oriented lookup index for open linked data. IJMSO 3(1):37–52CrossRefGoogle Scholar
  29. 29.
    Petratos P (2008) Informing through user-centered exploratory search and human-computer interaction strategies. Issues in Informing Science and Information Technology (IISIT) 5:705–727. Information Science Institute, 131 Brookhill Court, Santa Rosa, California 95409 USAGoogle Scholar
  30. 30.
    Pollitt AS, Ellis GP, Smith MP (1994) HIBROWSE for bibliographic databases. J Inf Sci 20(6):413–426. Chartered Institute of Library and Information Professionals, doi: 10.1177/016555159402000604 Google Scholar
  31. 31.
    Prud’hommeaux E, Seaborne A (2008) SPARQL query language for RDF. W3CGoogle Scholar
  32. 32.
    Qu Y, Furnas GW (2008) Model-driven formative evaluation of exploratory search: a study under a sensemaking framework. Inf Process Manag 44(2):534–555CrossRefGoogle Scholar
  33. 33.
    Richard Newman Danny Ayers SR (2005) Tag Ontology http://www.holygoat.co.uk/owl/redwood/0.1/tags/
  34. 34.
    Sack H, Waitelonis J (2006) Integrating social tagging and document annotation for content-based search in multimedia data. In: Proc. of the 1st semantic authoring and annotation workshop, Athens (GA), USAGoogle Scholar
  35. 35.
    Sack H, Waitelonis J (2006) Automated annotation of synchronized multimedia presentations. In: Proceedings of the ESWC 2006 workshop on mastering the gap: from information extraction to semantic representation, CEUR Workshop ProceedingsGoogle Scholar
  36. 36.
    Schraefel M, Wilson M, Russell A, Smith DA (2006) mSpace: improving information access to multimedia domains with multimodal exploratory search. Commun. ACM 49(4):47–49CrossRefGoogle Scholar
  37. 37.
    Schreiber G, Amin A, Aroyo L, van Assem M, de Boer V, Hardman L, Hildebrand M, Omelayenko B, van Osenbruggen J, Tordai A, Wielemaker J, Wielinga B (2008) Semantic annotation and search of cultural-heritage collections: the MultimediaN E-Culture demonstrator. SemanticWeb Challenge 2006/2007; Web Semantics: Science, Services and Agents on theWorld Wide Web 6(4):243–249. doi: 10.1016/j.websen.2008.08.001
  38. 38.
    Semantic Web Education and Outreach Interest Group (2009) http://esw.w3.org/topic/SweoIG/TaskForces/CommunityProjects/LinkingOpenData/
  39. 39.
    Singh H, Cheung A, Guadarrama S, Loer C, Nikravesh M (2006) Evaluating ontology based search strategies. In: Soft computing for information processing and analysis, vol 164, pp 189–202Google Scholar
  40. 40.
    Smeaton AF, Over P, Kraaij W (2006) Evaluation campaigns and TRECVid. In: MIR ’06: proceedings of the 8th ACM international workshop on multimedia information retrieval, ACM, New York, NY, USA, pp 321–330CrossRefGoogle Scholar
  41. 41.
    Smeulders AWM, van Gemert JC, Huurnink B, Koelma DC, de Rooij O, van De Sande KEA, Snoek CGM, Veenman CJ, Worring M (2007) Semantic video search. In: Proc. of 14th int. conf. on image analysis and processing, IEEE Computer Soc, pp 51–58Google Scholar
  42. 42.
    Smith MK, Welty C, McGuinness DL (2004) OWLWeb Ontology Language Guide. Tech. rep., W3C, WorldWide Web Consortium. http://www.w3.org/TR/owl-guide/
  43. 43.
    Stefaner M, Urban T, Seefelder M (2008) Elastic lists for facet browsing and resource analysis in the enterprise, dexa. In: 19th international conference on database and expert systems application, pp 397–401Google Scholar
  44. 44.
    Tran DT, Bloehdorn S, Cimiano P, Haase P (2007) Expressive resource descriptions for ontology-based information retrieval. In: Proc. of the 1st int. conf. on the theory of information retrieval (ICTIR’07)Google Scholar
  45. 45.
    Waitelonis J, Sack H (2009) Augmenting video search with Linked Open Data. In: Proc. of int. conf. on semantic systems 2009Google Scholar
  46. 46.
    Waitelonis J, Sack H (2009) Towards exploratory video search using linked data. In: ISM ’09: proc. of the 2009 11th IEEE int. symp. on multimedia, IEEE Computer Society, Washington, DC, USA, pp 540–545CrossRefGoogle Scholar
  47. 47.
    Yee KP, Swearingen K, Li K, Hearst M (2003) Faceted metadata for image search and browsing. In: CHI ’03: proceedings of the SIGCHI conference on human factors in computing systems, ACM, New York, NY, USA, pp 401–408Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Hasso-Plattner-Institute PotsdamPotsdamGermany

Personalised recommendations