Advertisement

Multimedia Tools and Applications

, Volume 51, Issue 1, pp 213–246 | Cite as

Automatic image semantic interpretation using social action and tagging data

  • Neela SawantEmail author
  • Jia Li
  • James Z. Wang
Article

Abstract

The plethora of social actions and annotations (tags, comments, ratings) from online media sharing Websites and collaborative games have induced a paradigm shift in the research on image semantic interpretation. Social inputs with their added context represent a strong substitute for expert annotations. Novel algorithms have been designed to fuse visual features with noisy social labels and behavioral signals. In this survey, we review nearly 200 representative papers to identify the current trends, challenges as well as opportunities presented by social inputs for research on image semantics. Our study builds on an interdisciplinary confluence of insights from image processing, data mining, human computer interaction, and sociology to describe the folksonomic features of users, annotations and images. Applications are categorized into four types: concept semantics, person identification, location semantics and event semantics. The survey concludes with a summary of principle research directions for the present and the future.

Keywords

Web 2.0 Social media Collaborative annotation Image semantics Folksonomic features Survey 

References

  1. 1.
    Adomavicius G, Tuzhilin A (2005) Towards the next generation of recommender systems: a survey of the state-of-the-art and possible extensions. IEEE Trans Knowl Data Eng 17(6):734–749CrossRefGoogle Scholar
  2. 2.
    Aesthetics. Definition from Oxford dictionaries. http://www.oxforddictionaries.com/definition/aesthetics
  3. 3.
    Agichtein E, Brill E, Dumais S (2006) Improving web search ranking by incorporating user behavior information. In: Proc res dev inf ret, pp 19–26Google Scholar
  4. 4.
    Ahern S, Naaman M, Nair R, Yang J (2007) World explorer: visualizing aggregate data from unstructured text in geo-referenced collections. In: Proc jt conf digit libr, pp 1–10Google Scholar
  5. 5.
    Allan J (ed) (2002) Topic detection and tracking: event-based information organization. Kluwer, BostonzbMATHGoogle Scholar
  6. 6.
    Allan M, Verbeek J (2009) Ranking user-annotated images for multiple query terms. In: Proc Br mach vis confGoogle Scholar
  7. 7.
    Ames M, Naaman M (2007) Why we tag: motivations for annotation in mobile and online media. In: Proc hum factors comput syst, pp 971–980Google Scholar
  8. 8.
    Andrienko N (2003) Exploratory spatio-temporal visualization: an analytical review. J Vis Lang Comput 14(6):503–541CrossRefGoogle Scholar
  9. 9.
    Anguelov D, Lee K, Gokturk S, Sumengen B (2007) Contextual identity recognition in personal photo albums. In: Proc comput vis pattern recognit, pp 1–7Google Scholar
  10. 10.
    Bailloeul T, Zhu C, Xu Y (2008) Automatic image tagging as a random walk with priors on the canonical correlation subspace. In: Proc ACM multimed inf ret, pp 75–82Google Scholar
  11. 11.
    Barnard K, Duygulu P, Forsyth D, Freitas ND, Blei DKJ, Hofmann T, Poggio T, Shawe-Taylor J (2003) Matching words and pictures. J Mach Learn Res 3:1107–1135zbMATHCrossRefGoogle Scholar
  12. 12.
    Barnard K, Fan Q, Swaminathan R, Hoogs A, Collins R, Rondot P, Kaufhold J (2008) Evaluation of localized semantics: data, methodology, and experiments. Int J Comput Vis 77(1–3):199–217CrossRefGoogle Scholar
  13. 13.
    Berg T, Forsyth D (2007) Automatic ranking in iconic images. Tech rep, University of California, BerkeleyGoogle Scholar
  14. 14.
    Bian J, Liu Y, Agichtein E, Zha H (2008) A few bad votes too many?: towards robust ranking in social media. In: Proc workshop on advers inf ret on the Web, pp 53–60Google Scholar
  15. 15.
    Bian J, Liu Y, Zhou D, Agichtein E, Zha H (2009) Learn to recognize reliable users and content in social media with coupled mutual reinforcement. In: Proc World Wide Web, pp 51–60Google Scholar
  16. 16.
    Böttcher M, Höppner F, Spiliopoulou M (2008) On exploiting the power of time in data mining. SIGKDD Explor Newsl 10(2):3–11CrossRefGoogle Scholar
  17. 17.
    Boutell M, Luo J (2004) Photo classification by integrating image content and camera metadata. In: Proc pattern recognit, pp 901–904Google Scholar
  18. 18.
    Brinker K, Hüllermeier E (2007) Case-based multilabel ranking. In: Proc int jt conf artifical intell, pp 702–707Google Scholar
  19. 19.
    Budanitsky A, Hirst G (2006) Evaluating wordnet-based measures of lexical semantic relatedness. Proc Res Comput Linguist 32(1):13–47CrossRefGoogle Scholar
  20. 20.
    Budiu R, Pirolli P, Hong L (2009) Remembrance of things tagged: how tagging effort affects tag production and human memory. In: Proc hum factors comput syst, pp 615–624Google Scholar
  21. 21.
    Cai D, He X, Li Z, Ma WY, Wen JR (2004) Hierarchical clustering of www image search results using visual, textual and link information. In: Proc ACM multimed, pp 952–959Google Scholar
  22. 22.
    Cao L, Luo J, Huang TS (2008) Annotating photo collections by label propagation according to multiple similarity cues. In: Proc ACM multimed, pp 121–130Google Scholar
  23. 23.
    Cao L, Luo J, Kautz H, Huang T (2008) Annotating collections of photos using hierarchical event and scene models. In: Proc comput vis pattern recognitGoogle Scholar
  24. 24.
    Cattuto C, Benz D, Hotho A, Stumme G (2008) Semantic analysis of tag similarity measures in collaborative tagging systems. In: Proc workshop ontol learn & popul, pp 39–43Google Scholar
  25. 25.
    Cattuto C, Schmitz C, Baldassarri A, Servedio V, Loreto V, Hotho A, Grahl M, Stumme G (2007) Network properties of folksonomies. AI Commun 20(4):245–262MathSciNetGoogle Scholar
  26. 26.
    Chandola V, Banerjee A, Kumar V (2007) Outlier detection: a survey. Technical report, University of MinnesotaGoogle Scholar
  27. 27.
    Chandramouli K, Izquierdo E (2010) Semantic structuring and retrieval of event chapters in social photo collections. In: Proc ACM multimed inf ret, pp 507–516Google Scholar
  28. 28.
    Chatzilari E, Nikolopoulos S, Kompatsiaris I, Giannakidou E, Vakali A (2009) Leveraging social media for training object detectors. In: Proc digit signal proc, pp 1–8Google Scholar
  29. 29.
    Chen HM, Chang MH, Chang PC, Tien MC, Hsu WH, Wu JL (2008) Sheepdog: group and tag recommendation for Flickr photos by automatic search-based learning. In: Proc ACM multimed, pp 737–740Google Scholar
  30. 30.
    Chen L, Roy A (2009) Event detection from Flickr data through wavelet-based spatial analysis. In: Proc ACM inf knowl manag, pp 523–532Google Scholar
  31. 31.
    Chen WC, Battestini A, Gelfand N, Setlur V (2009) Visual summaries of popular landmarks from community photo collections. In: Proc ACM multimed, pp 789–792Google Scholar
  32. 32.
    Chi E, Mytkowicz T (2008) Understanding the efficiency of social tagging systems using information theory. In: Proc ACM hypertext and hypermedia, pp 81–88Google Scholar
  33. 33.
    Choi JY, Yang S, Ro YM, Plataniotis K (2008) Face annotation for personal photos using context-assisted face recognition. In: Proc ACM multimed inf ret, pp 44–51Google Scholar
  34. 34.
    Chua TS, Tang J, Hong R, Li H, Luo Z, Yan-Tao Z (2009) Nus-wide: A real-world web image database from national university of singapore. In: Proc ACM image and video ret, pp 1–9Google Scholar
  35. 35.
    Cilibrasi R, Vitanyi P (2007) The Google similarity distance. IEEE Trans Knowl Data Eng 19(3):370–383CrossRefGoogle Scholar
  36. 36.
    Cristani M, Perina A, Castellani U, Murino V (2008) Content visualization and management of geo-located image databases. In: Ext abstr on hum factors comput syst, pp 2823–2828Google Scholar
  37. 37.
    Cristani M, Perina A, Castellani U, Murino V (2008) Geo-located image analysis using latent representations. In: Proc comput vis pattern recognitGoogle Scholar
  38. 38.
    Cutting DR, Karger DR, Pedersen JO, Tukey JW (1992) Scatter/gather: a cluster-based approach to browsing large document collections. In: Proc res and dev inf ret, pp 318–329Google Scholar
  39. 39.
    Datta R, Joshi D, Li J, Wang JZ (2006) Studying aesthetics in photographic images using a computational approach. Lect Notes Comput Sci: Proc Eur Conf Comput Vis 3953(3):288–301CrossRefGoogle Scholar
  40. 40.
    Datta R, Joshi D, Li J, Wang JZ (2007) Tagging over time: real-world image annotation by lightweight meta-learning. In: Proc ACM multimed, pp 393–402Google Scholar
  41. 41.
    Datta R, Joshi D, Li J, Wang JZ (2008) Image retrieval: ideas, influences, and trends of the new age. ACM Comput Surv 40(2):1–60CrossRefGoogle Scholar
  42. 42.
    Datta R, Wang JZ (2010) Acquine: Aesthetic quality inference engine—real-time automatic rating of photo aesthetics. In: Proc ACM multimed inf ret, demo, pp 421–424Google Scholar
  43. 43.
    Davis M, Smith M, Canny J, Good N, King S, Janakiraman R (2005) Towards context-aware face recognition. In: Proc ACM multimed, pp 483–486Google Scholar
  44. 44.
    Davis M, Smith M, Stentiford F, Bamidele A, Canny J, Good N, King S, Janakiraman R (2006) Using context and similarity for face and location identification. In: Proc symp on electron imaging sci and techGoogle Scholar
  45. 45.
    Dean J, Ghemawat S (2004) Mapreduce: simplified data processing on large clusters. In: Proc symp on oper syst design & implement, p 10Google Scholar
  46. 46.
  47. 47.
    Deng J, Li K, Do M, Su H, Fei-Fei L (2009) Construction and analysis of a large scale image ontology. Vision Sciences Society (VSS)Google Scholar
  48. 48.
    Dong W, Fu WT (2010) Cultural difference in image tagging. In: Proc hum factors comput syst, pp 981–984Google Scholar
  49. 49.
    Donmez P, Carbonell J, Schneider J (2009) Efficiently learning the accuracy of labeling sources for selective sampling. In: Proc ACM knowl discov data mining, pp 259–268Google Scholar
  50. 50.
    DPChallenge—a digital photography contest. http://www.dpchallenge.com
  51. 51.
    Dubinko M, Kumar R, Magnani J, Novak J, Raghavan P, Tomkins A (2006) Visizing tags over time. In: Proc World Wide Web, pp 193–202Google Scholar
  52. 52.
    Duda R, Hart P, Stork D (2000) Pattern classification, 2nd edn. Wiley-Interscience, New YorkGoogle Scholar
  53. 53.
    Ester M, Kriegel H, Sander J (1999) Knowledge discovery in spatial databases. In: Proc Ger conf artif intell, pp 61–74Google Scholar
  54. 54.
    Exif and related resources. http://www.exif.org
  55. 55.
    Feifei L, Fergus R, Perona P (2006) One-shot learning of object categories. IEEE Trans Pattern Anal Mach Intell 28(4):594–611CrossRefGoogle Scholar
  56. 56.
    Feifei L, Fergus R, Perona P (2007) Learn generative visual models from few training examples: an incremental bayesian approach tested on 101 object categories. Comput Vis Image Underst 106(1):59–70CrossRefGoogle Scholar
  57. 57.
    Fellbaum C (ed) (1998) WordNet: an electronic lexical database (language, speech, and communication). MIT Press, CambridgeGoogle Scholar
  58. 58.
  59. 59.
  60. 60.
    Fu WT (2008) The microstructures of social tagging: a rational model. In: Proc ACM comput support co-op work, pp 229–238Google Scholar
  61. 61.
    Furnas G, Landauer T, Gomez L, Dumais S (1987) The vocabulary problem in human-system communication. Commun ACM 30(11):964–971CrossRefGoogle Scholar
  62. 62.
    Furnas G, Landauer T, Gomez L, Dumais S (1984) Statistical semantics: analysis of the potential performance of keyword information systems. In: Proc SIGCHI conf hum factors comput syst, pp 187–242Google Scholar
  63. 63.
    Gaber M, Zaslavsky A, Krishnaswamy S (2005) Mining data streams: a review. ACM SIGMOD Rec 34(2):18–26CrossRefGoogle Scholar
  64. 64.
    Garg N, Weber I (2008) Personalized, interactive tag recommendation for Flickr. In: Proc ACM recomm sys, pp 67–74Google Scholar
  65. 65.
  66. 66.
    Giannakidou E, Kompatsiaris I, Vakali A (2008) Semsoc: semantic social and content-based clustering in multimedia collaborative tagging systems. In: Proc IEEE int conf semant comput, pp 128–135Google Scholar
  67. 67.
    Girgensohn A, Adcock J, Wilcox L (2004) Leveraging face recognition technology to find and organize photos. In: Proc ACM SIGMM int workshop multimed inf ret, pp 99–106Google Scholar
  68. 68.
    Golder S (2008) Measuring social networks with digital photograph collections. In: Proc ACM hypertext and hypermedia, pp 43–48Google Scholar
  69. 69.
    Golder S, Huberman B (2006) Usage patterns of collaborative tagging systems. J Inf Sci 32(2):198–208CrossRefGoogle Scholar
  70. 70.
    Gonçalves D, Jesus R, Correia N (2008) A gesture based game for image tagging. In: Ext abstr on hum factors comput syst, pp 2685–2690Google Scholar
  71. 71.
    Griffin G, Holub A, Perona P (2007) Caltech-256 object category dataset. Tech rep 7694, California Institute of TechnologyGoogle Scholar
  72. 72.
    Games with a purpose. http://www.gwap.com/gwap/about
  73. 73.
    Halpin H, Robu V, Shepherd H (2007) The complex dynamics of collaborative tagging. In: Proc World Wide Web, pp 211–220Google Scholar
  74. 74.
    Hamilton JD (1994) Time series analysis, 1st edn. Princeton University Press, PrincetonzbMATHGoogle Scholar
  75. 75.
    Hodge V, Austin J (2004) A survey of outlier detection methodologies. Artif Intell Rev 22(2):85–126zbMATHCrossRefGoogle Scholar
  76. 76.
    Hofmann T (2001) Unsupervised learning by probabilistic latent semantic analysis. Mach Learn 42(1-2):177–196zbMATHCrossRefGoogle Scholar
  77. 77.
    Hotho A, Jäschke R, Schmitz C, Stumme G (2006) Inf retrieval in folksonomies: search and ranking. In: Proc Eur semant web conf, vol 4011, pp 411–426Google Scholar
  78. 78.
    Hotho A, Jäschke R, Schmitz C, Stumme G (2006) Folkrank: a ranking algorithm for folksonomies. In: Proc conf Fachgruppe inf ret, pp 111–114Google Scholar
  79. 79.
    Huiskes M, Lew M (2008) The mir Flickr retrieval evaluation. In: Proc ACM multimed inf ret, pp 39–43Google Scholar
  80. 80.
    Ihler A, Hutchins J, Smyth P (2007) Learning to detect events with markov-modulated poisson processes. ACM Trans Knowl Discov Data 1(3):13CrossRefGoogle Scholar
  81. 81.
    Ivanov I, Vajda P, Goldmann L, Lee J, Ebrahimi T (2010) Object-based tag propagation for semi-automatic annotation of images. In: Proc ACM multimed inf ret, pp 497–506Google Scholar
  82. 82.
    Jaffe A, Naaman M, Tassa T, Davis M (2006) Generating summaries and visualization for large collections of geo-referenced photographs. In: Proc ACM workshop on multimed inf ret, pp 89–98Google Scholar
  83. 83.
    Jäschke R, Marinho L, Hotho A, Schmidt-Thieme L, Stumme G (2007) Tag recommendations in folksonomies. In: Proc Eur conf princ. and pract of knowl discov databases, pp 506–514Google Scholar
  84. 84.
    Jeon J, Lavrenko V, Manmatha R (2003) Automatic image annotation and retrieval using cross-media relevance models. In: Proc res dev inf ret, pp 119–126Google Scholar
  85. 85.
    Jiang J, Conrath D (1997) Semantic similarity based on corpus statistics and lexical taxonomy. In: Proc res comput linguist, pp 19–33Google Scholar
  86. 86.
    Jin X, Luo J, Yu J, Wang G, Joshi D, Han J (2010) iRIN: image retrieval in image-rich information networks. In: Proc World wide web, pp 1261–1264Google Scholar
  87. 87.
    Jin Y, Khan L, Wang L, Awad M (2005) Image annotations by combining multiple evidence & wordnet. In: Proc ACM multimed, pp 706–715Google Scholar
  88. 88.
    Jones W (1986) The memory extender personal filing system. In: Proc hum factors comput syst, pp 298–305Google Scholar
  89. 89.
    Joshi D, Luo J (2008) Inferring generic activities and events from image content and bags of geo-tags. In: Proc content-based image and video ret, pp 37–46Google Scholar
  90. 90.
    Ke Y, Tang X, Jing F (2006) The design of high-level features for photo quality assessment. In: Proc comput vis pattern recognit, pp 419–426Google Scholar
  91. 91.
    Kennedy L, Naaman M, Ahern S, Nair R, Rattenbury T (2007) How Flickr helps us make sense of the world: context and content in community-contributed media collections. In: Proc ACM multimed, pp 631–640Google Scholar
  92. 92.
    Kennedy L, Slaney M, Weinberger K (2009) Reliable tags using image similarity: mining specificity and expertise from large-scale multimedia databases. In: Proc workshop web-scale multimed corpus, pp 17–24Google Scholar
  93. 93.
    Kennedy L, Chang S, Kozintsev I (2006) To search or to label?: predicting the performance of search-based automatic image classifiers. In: Proc ACM workshop on multimed inf ret, pp 249–258Google Scholar
  94. 94.
    Kleinberg J (1999) Authoritative sources in a hyperlinked environment. J ACM 46(5):604–632zbMATHCrossRefMathSciNetGoogle Scholar
  95. 95.
    Kleinberg J (2003) Bursty and hierarchical structure in streams. In: Proc knowl discov and data mining, vol 7(4), pp 373–397Google Scholar
  96. 96.
    Koperski K, Adhikary J, Han J (1996) Spatial data mining: progress and challenges—survey paper. In: Proc workshop res issues data mining knowl discov, pp 1–10Google Scholar
  97. 97.
    Koutrika G, Effendi F, Gyöngyi Z, Heymann P, Garcia-Molina H (2007) Combating spam in tagging systems. In: Proc workshop advers inf ret web, pp 57–64Google Scholar
  98. 98.
    Krestel R, Chen L (2008) Using co-occurence of tags and resources to identify spammers. In: Proc conf pract knowl discov databasesGoogle Scholar
  99. 99.
    Kucuktunc O, Sevil S, Tosun A, Zitouni H, Duygulu P, Can F (2008) Tag suggestr: automatic photo tag expansion using visual information for photo sharing websites. In: Proc semant digit media technol: semant multimedGoogle Scholar
  100. 100.
    Kustanowitz J, Shneiderman B (2005) Motivating annotation for personal digital photo libraries: lowering barriers while raising incentives. Tech rep, University of MarylandGoogle Scholar
  101. 101.
    LabelMe: the open annotation tool. http://labelme.csail.mit.edu
  102. 102.
    Lambiotte R, Ausloos M (2006) Collaborative tagging as a tripartite network. In: Proc comput sci, pp 1114–1117Google Scholar
  103. 103.
    Landauer T, Foltz P, Laham D (1998) An introduction to latent semantic analysis. In: Discourse proc, vol 25, pp 259–284Google Scholar
  104. 104.
    Lee L (1999) Measures of distributional similarity. In: Proc comput linguist, pp 25–32Google Scholar
  105. 105.
    Leskovec J, Lang K, Dasgupta A, Mahoney M (2008) Statistical properties of community structure in large social and information networks. In: Proc World Wide Web, pp 695–704Google Scholar
  106. 106.
    Levi K, Weiss Y (2004) Learning object detection from a small number of examples: the importance of good features. In: Proc comput vis pattern recognit, vol 2, pp 53–60Google Scholar
  107. 107.
    Li J, Wang JZ (2003) Automatic linguistic indexing of pictures by a statistical modeling approach. IEEE Trans Pattern Anal Mach Intell 25(9):1075–1088CrossRefGoogle Scholar
  108. 108.
    Li J, Wang JZ (2008) Real-time computerized annotation of pictures. IEEE Trans Pattern Anal Mach Intell 30(6):985–1002CrossRefGoogle Scholar
  109. 109.
    Li Q, Lu S (2008) Collaborative tagging applications and approaches. IEEE Multimed 15(3):14–21CrossRefGoogle Scholar
  110. 110.
    Li X, Chen L, Zhang L, Lin F, Ma WY (2006) Image annotation by large-scale content-based image retrieval. In: Proc ACM multimed, pp 607–610Google Scholar
  111. 111.
    Li X, Snoek CG, Worring M (2008) Learn tag relevance by neighbor voting for social image retrieval. In: Proc ACM multimed inf ret, pp 180–187Google Scholar
  112. 112.
    Lindstaedt S, Mörzinger R, Sorschag R, Pammer V, Thallinger G (2009) Automatic image annotation using visual content and folksonomies. Multimed Tools Appl 42(1):97–113CrossRefGoogle Scholar
  113. 113.
    Lindstaedt S, Pammer V, Mörzinger R, Kern R, Mülner H, Wagner C (2008) Recommending tags for pictures based on text, visual content and user context. In: Proc Internet & Web appl & serv, pp 506–511Google Scholar
  114. 114.
    Liu D, Hua XS, Yang L, Wang M, Zhang HJ (2009) Tag ranking. In: Proc World Wide Web, pp 351–360Google Scholar
  115. 115.
    Liu D, Wang M, Hua XS, Zhang HJ (2009) Smart batch tagging of photo albums. In: Proc ACM multimed, pp 809–812Google Scholar
  116. 116.
    Liu D, Wang M, Yang L, Hua XS, Zhang H (2009) Tag quality improvement for social images. In: Proc IEEE multimed and expo, pp 350–353Google Scholar
  117. 117.
    Liu Y, Zhang D, Lu G, Ma WY (2007) A survey of content-based image retrieval with high-level semantics. Pattern Recogn 40(1):262–282zbMATHCrossRefGoogle Scholar
  118. 118.
    Lu Y, Zhang L, Tian Q, Ma WY (2008) What are the high-level concepts with small semantic gaps? In: Proc comput vis pattern recognitGoogle Scholar
  119. 119.
    Luxburg U (2007) A tutorial on spectral clustering. Stat Comput 17(4):395–416CrossRefMathSciNetGoogle Scholar
  120. 120.
    Manning C, Raghavan P, Schutze H (2008) Index compression. In: Introduction to information retrieval. Cambridge University Press, Cambridge, pp 85–108Google Scholar
  121. 121.
    Marlow C, Naaman M, Boyd D, Davis M (2006) Ht06, tagging paper, taxonomy, Flickr, academic article, to read. In: Proc conf hypertext hypermedia, pp 31–40Google Scholar
  122. 122.
    Marques O, Lux M (2008) An exploratory study on joint analysis of visual classification in narrow domains and the discriminative power of tags. In: Proc ACM workshop multimed semant, pp 40–47Google Scholar
  123. 123.
    Amazon mechanical turk. http://www.mturk.com/mturk
  124. 124.
    Miller G (1983) Informavores. In: The study of information: interdiscipiinary messages. Wiley-Interscience, New York, pp 111–113Google Scholar
  125. 125.
    Miller H, Han J (2001) Geographic data mining and knowledge discovery. Taylor & Francis, New YorkCrossRefGoogle Scholar
  126. 126.
    Moxley E, Kleban J, Manjunath BS (2008) Spirittagger: a geo-aware tag suggestion tool mined from Flickr. In: Proc ACM multimed inf ret, pp 24–30Google Scholar
  127. 127.
    Naaman M, Nair R (2008) Zonetag’s collaborative tag suggestions: what is this person doing in my phone?. IEEE Multimed 15(3):34–40CrossRefGoogle Scholar
  128. 128.
    Naaman M, Paepcke A, Garcia-Molina H (2003) From where to what: metadata sharing for digital photographs with geographic coordinates. In: On the move to meaningful internet syst: CoopIS, DOA, and ODBASE, pp 196–217Google Scholar
  129. 129.
    Naaman M, Yeh R, Garcia-Molina H, Paepcke A (2005) Leveraging context to resolve identity in photo albums. In: Proc jt conf digit libr, pp 178–187Google Scholar
  130. 130.
    Navigli R (2009) Word sense disambiguation: a survey. ACM Comput Surv 41(2):1–69CrossRefGoogle Scholar
  131. 131.
    Negoescu RA, Gatica-Perez D (2008) Analyzing Flickr groups. In: Proc content-based image & video ret, pp 417–426Google Scholar
  132. 132.
    Ng R, Han J (1994) Efficient and effective clustering methods for spatial data mining. In: Proc very large databases, pp 144–155Google Scholar
  133. 133.
    Nisbett RE, Peng K, Choi I, Norenzayan A (2001) Culture and systems of thought: holistic versus analytic cognition. Psychol Rev 108(2):291–310CrossRefGoogle Scholar
  134. 134.
    Noll M, Au Yeung C, Gibbins N, Meinel C, Shadbolt N (2009) Telling experts from spammers: expertise ranking in folksonomies. In: Proc res dev inf ret, pp 612–619Google Scholar
  135. 135.
    Nov O, Naaman M, Ye C (2008) What drives content tagging: the case of photos on Flickr. In: Proc hum factors comput syst, pp 1097–1100Google Scholar
  136. 136.
    Nov O, Ye C (2010) Why do people tag? Motivations for photo tagging. Commun ACM 53(7):128–131CrossRefGoogle Scholar
  137. 137.
    Nowak S, Rüger S (2010) How reliable are annotations via crowdsourcing: a study about inter-annotator agreement for multi-label image annotation. In: Proc ACM multimed inf ret, pp 557–566Google Scholar
  138. 138.
    Obrador P, Anguera X, deOliveira R, Oliver N (2009) The role of tags and image aesthetics in social image search. In: Proc SIGMM workshop social media, pp 65–72Google Scholar
  139. 139.
    Pang B, Lee L (2008) Opinion mining and sentiment analysis. Found Trends Inf Ret 2(1–2):1–135CrossRefGoogle Scholar
  140. 140.
    Pedersen T, Patwardhan S, Michelizzi J (2004) Wordnet: similarity—measuring the relatedness of concepts. In: Demo papers North Am chap assoc for comput linguist—hum lang technol, pp 38–41Google Scholar
  141. 141.
    Photography community, including forums, reviews, and galleries from photonet. http://photo.net
  142. 142.
    Pirolli P (2007) Information foraging theory: adaptive interaction with information. Oxford University Press, LondonCrossRefGoogle Scholar
  143. 143.
    Pirolli P (2009) An elementary social information foraging model. In: Proc hum factors comput syst, pp 605–614Google Scholar
  144. 144.
    Ramakrishnan G, Chitrapura KP, Krishnapuram R, Bhattacharyya P (2005) A model for handling approximate, noisy or incomplete labeling in text classification. In: Proc mach learn, pp 681–688Google Scholar
  145. 145.
    Rattenbury T, Good N, Naaman M (2007) Towards automatic extraction of event and place semantics from Flickr tags. In: Proc res dev inf ret, pp 103–110Google Scholar
  146. 146.
    Rebbapragada U, Brodley C (2007) Class noise mitigation through instance weighting. In: Proc Eur conf mach learn, pp 708–715Google Scholar
  147. 147.
    Robertson S, Vojnovic M, Weber I (2009) Rethinking the ESP game. In: Proc ext abstr hum factors comput syst, pp 3937–3942Google Scholar
  148. 148.
    Roddick J, Spiliopoulou M (2002) A survey of temporal knowledge discovery paradigms and methods. IEEE Trans Knowl Data Eng 14(4):750–767CrossRefGoogle Scholar
  149. 149.
    Roddick J, Spiliopoulou M, Lister D, Ceglar A (2008) Higher order mining. SIGKDD Explor Newsl 10(1):5–17CrossRefGoogle Scholar
  150. 150.
    Rui Y, Huang TS, Ortega M, Mehrotra S (1998) Relevance feedback: a power tool for interactive content-based image retrieval. In: Proc circuits syst video tech, vol 8(5), pp 644–655Google Scholar
  151. 151.
    Russell B, Torralba A, Murphy K, Freeman W (2008) LabelMe: a database and web-based tool for image annotation. Int J Comput Vis 77(1):157–173Google Scholar
  152. 152.
    Salton G, Buckley C (1987) Term weighting approaches in automatic text retrieval. Tech rep, Cornell UniversityGoogle Scholar
  153. 153.
    Salton G, Wong A, Yang CS (1975) A vector space model for automatic indexing. Commun ACM 18(11):613–620zbMATHCrossRefGoogle Scholar
  154. 154.
    Santini S, Gupta A, Jain R (2001) Emergent semantics through interaction in image databases. IEEE Trans Knowl Data Eng 13(3):337–351CrossRefGoogle Scholar
  155. 155.
    Sarwar B, Karypis G, Konstan J, Reidl J (2001) Item-based collaborative filtering recommendation algorithms. In: Proc World Wide Web, pp 285–295Google Scholar
  156. 156.
    Sawant N, Datta R, Li J, Wang JZ. (2010) Quest for relevant tags using local interaction networks and visual content. In: Proc ACM multimed inf ret, pp 231–240Google Scholar
  157. 157.
    Sen S, Harper FM, LaPitz A, Riedl J (2007) The quest for quality tags. In: Proc Int ACM support group work, pp 361–370Google Scholar
  158. 158.
    Sen S, Lam S, Rashid A, Cosley D, Frankowski D, Osterhouse J, Harper F, Riedl J (2006) Tagging, communities, vocabulary, evolution. In: Proc comput support co-op work, pp 181–190Google Scholar
  159. 159.
    Sen S, Vig J, Riedl J (2009) Learning to recognize valuable tags. In: Proc intell user interfaces, pp 87–96Google Scholar
  160. 160.
    Seneviratne L, Izquierdo E (2010) An interactive framework for image annotation through gaming. In: Proc ACM multimed inf ret, pp 517–526Google Scholar
  161. 161.
    Serdyukov P, Murdock V, van Zwol R (2009) Placing Flickr photos on a map. In: Proc res dev inf ret, pp 484–491Google Scholar
  162. 162.
    Shepitsen A, Gemmell J, Mobasher B, Burke R (2008) Personalized recommendation in social tagging systems using hierarchical clustering. In: Proc ACM recomm sys, pp 259–266Google Scholar
  163. 163.
    Sigurbjörnsson B, van Zwol R (2008) Flickr tag recommendation based on collective knowledge. In: Proc World Wide Web, pp 327–336Google Scholar
  164. 164.
    Sinha P, Jain R (2008) Classification and annotation of digital photos using optical context data. In: Proc content-based image & video ret, pp 309–318Google Scholar
  165. 165.
    Sivic J, Zitnick C, Szeliski R (2006) Finding people in repeated shots of the same scene. In: Proc Br mach vis conf, pp 909–918Google Scholar
  166. 166.
    Smeulders A, Worring M, Santini S, Gupta A, Jain R (2000) Content-based image retrieval at the end of the early years. IEEE Trans Pattern Anal Mach Intell 22(12):1349–1380CrossRefGoogle Scholar
  167. 167.
    Smith M, Kollock P (1999) Communities in cyberspace, Chapters 5 and 6. Routledge, Evanston, pp 107–165Google Scholar
  168. 168.
    Snavely N, Seitz S, Szeliski R (2006) Photo tourism: exploring photo collections in 3d. ACM Trans Graph 25(3). doi: 10.1145/1141911.1141964 CrossRefGoogle Scholar
  169. 169.
    Solli M, Lenz R (2010) Emotion related structures in large image databases. In: Proc ACM image and video ret, pp 398–405Google Scholar
  170. 170.
    Song Y, Leung T (2006) Context-aided human recognition: clustering. In: Proc Eur conf comput vis, pp 382–395Google Scholar
  171. 171.
    Sorokin A, Forsyth D (2008) Utility data annotation with amazon mechanical turk. In: Comput vis pattern recognit workshopsGoogle Scholar
  172. 172.
    Suchanek F, Vojnovic M, Gunawardena D (2008) Social tags: meaning and suggestions. In: Proc ACM inf knowl manag, pp 223–232Google Scholar
  173. 173.
    Suh B, Bederson B (2007) Semi-automatic photo annotation strategies using event based clustering and clothing based person recognition. Interact Comput 19(4):524–544CrossRefGoogle Scholar
  174. 174.
    Sun A, Bhowmick S (2009) Image tag clarity: in search of visual-representative tags for social images. In: Proc SIGMM workshop social media, pp 19–26Google Scholar
  175. 175.
    Surowiecki J (2004) The wisdom of crowds: why the many are smarter than the few and how collective wisdom shapes business, economies, societies and nations. Doubleday, New YorkGoogle Scholar
  176. 176.
    Sylvan E (2010) Predicting influence in an online community of creators. In: Proc hum factors comput syst, pp 1913–1916Google Scholar
  177. 177.
    Tang J, Yan S, Hong R, Qi GJ, Chua TS (2009) Inferring semantic concepts from community-contributed images and noisy tags. In: Proc ACM multimed, pp 223–232Google Scholar
  178. 178.
    Truran M, Goulding J, Ashman H (2005) Co-active intelligence for image retrieval. In: Proc ACM multimed, pp 547–550Google Scholar
  179. 179.
    Tuytelaars T, Mikolajczyk K (2008) Local invariant feature detectors: a survey. Found Trends Comput Graph Vis 3(3):177–280CrossRefGoogle Scholar
  180. 180.
    Verbeek J, Guillaumin M, Mensink T, Schmid C (2010) Image annotation with tagprop on the MIRFlickr set. In: Proc ACM multimed inf ret, pp 537–546Google Scholar
  181. 181.
    Vlachos M, Meek C, Vagena Z, Gunopulos D (2004) Identifying similarities, periodicities and bursts for online search queries. In: Proc ACM SIGMOD int conf manag data, pp 131–142Google Scholar
  182. 182.
    von Ahn L, Dabbish L (2004) Labeling images with a computer game. In: Proc hum factors comput syst, pp 319–326Google Scholar
  183. 183.
    von Ahn L, Dabbish L (2008) Designing games with a purpose. Commun ACM 51(8):58–67Google Scholar
  184. 184.
    von Ahn L, Liu R, Blum M (2006) Peekaboom: a game for locating objects in images. In: Proc hum factors comput syst, pp 55–64Google Scholar
  185. 185.
    Wang C, Jing F, Zhang L, Zhang HJ (2006) Image annotation refinement using random walk with restarts. In: Proc ACM multimed, pp 647–650Google Scholar
  186. 186.
    Wang C, Jing F, Zhang L, Zhang HJ (2007) Content-based image annotation refinement. In: Proc comput vis pattern recognit, pp 1–8Google Scholar
  187. 187.
    Wang M, Yang K, Hua XS, Zhang HJ (2009) Visual tag dictionary: interpreting tags with visual words. In: Proc workshop web-scale multimed corpus, pp 1–8Google Scholar
  188. 188.
    Wang S, Jing F, He J, Du Q, Zhang L (2007) Igroup: presenting web image search results in semantic clusters. In: Proc hum factors comput syst, pp 587–596Google Scholar
  189. 189.
    Wang X, Zhang L, Jing F, Ma WY (2006) Annosearch: image auto-annotation by search. In: Proc comput vis pattern recognit, pp 1483–1490Google Scholar
  190. 190.
    Weinberger K, Slaney M, Van Zwol R (2008) Resolving tag ambiguity. In: Proc ACM multimed, pp 111–120Google Scholar
  191. 191.
  192. 192.
    Wu L, Hua XS, Yu N, Ma WY, Li S (2008) Flickr distance. In: Proc ACM multimed, pp 31–40Google Scholar
  193. 193.
    Wu L, Yang L, Yu N, Hua XS (2009) Learning to tag. In: Proc World Wide Web, pp 361–370Google Scholar
  194. 194.
    Xue GR, Zeng HJ, Chen Z, Yu Y, Ma WY, Xi W, Fan W (2004) Optimizing web search using web click-through data. In: Proc ACM inf knowl manag, pp 118–126Google Scholar
  195. 195.
    Yacoob Y, Davis L (2006) Detection and analysis of hair. IEEE Trans Pattern Anal Mach Intell 28(7):1164–1169CrossRefGoogle Scholar
  196. 196.
    Yahoo! Flickr. http://www.flickr.com
  197. 197.
    Yan R, Natsev A, Campbell M (2009) Hybrid tagging and browsing approaches for efficient manual image annotation. IEEE Multimed 16(2):26–41CrossRefGoogle Scholar
  198. 198.
    Yang Q, Chen X, Wang G (2008) Web 2.0 dictionary. In: Proc content-based image and video ret, pp 591–600Google Scholar
  199. 199.
    Yang Q, Jian B, Chen X (2010) Tag dictionary and its applications. In: Proc ACM multimed inf ret, pp 397–400Google Scholar
  200. 200.
    Yang Y, Pierce T, Carbonell J (1998) A study of retrospective and on-line event detection. In: Proc int ACM SIGIR conf res and dev in inf ret, pp 28–36Google Scholar
  201. 201.
    Yao B, Yang X, Zhu SC (2007) Introduction to a large-scale general purpose ground truth database: methodology, annotation tool and benchmarks. In: Proc energy minimization methods comput vis pattern recognit, pp 169–183Google Scholar
  202. 202.
    Yuan J, Luo J, Kautz H, Wu Y (2008) Mining gps traces and visual words for event classification. In: Proc ACM multimed inf ret, pp 2–9Google Scholar
  203. 203.
    Zeng HJ, He QC, Chen Z, Ma WY, Ma J (2004) Learning to cluster web search results. In: Proc res dev inf ret, pp 210–217Google Scholar
  204. 204.
    Zhang L, Hu Y, Li M, Ma W, Zhang H (2004) Efficient propagation for face annotation in family albums. In: Proc ACM multimed, pp 716–723Google Scholar
  205. 205.
    Zhang S, Farooq U, Carroll JM (2009) Enhancing information scent: identifying and recommending quality tags. In: Proc ACM support group work, pp 1–10Google Scholar
  206. 206.
    Zhao M, Liu S (2006) Automatic person annotation of family photo album. In: Proc image & video ret, pp 163–172Google Scholar
  207. 207.
    Zhao W, Chellappa R, Phillips PJ, Rosenfeld A (2003) Face recognition: a literature survey. ACM Comput Surv 35(4):399–458CrossRefGoogle Scholar
  208. 208.
    Zunjarwad A, Sundaram H, Xie L (2007) Contextual wisdom: social relations and correlations for multimedia event annotation. In: Proc ACM multimed, pp 615–624Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.College of Information Sciences & TechnologyThe Pennsylvania State UniversityUniversity ParkUSA
  2. 2.Statistics DepartmentThe Pennsylvania State UniversityUniversity ParkUSA

Personalised recommendations