Advertisement

Multimedia Tools and Applications

, Volume 51, Issue 1, pp 279–302 | Cite as

Event detection and recognition for semantic annotation of video

  • Lamberto Ballan
  • Marco BertiniEmail author
  • Alberto Del Bimbo
  • Lorenzo Seidenari
  • Giuseppe Serra
Article

Abstract

Research on methods for detection and recognition of events and actions in videos is receiving an increasing attention from the scientific community, because of its relevance for many applications, from semantic video indexing to intelligent video surveillance systems and advanced human-computer interaction interfaces. Event detection and recognition requires to consider the temporal aspect of video, either at the low-level with appropriate features, or at a higher-level with models and classifiers than can represent time. In this paper we survey the field of event recognition, from interest point detectors and descriptors, to event modelling techniques and knowledge management technologies. We provide an overview of the methods, categorising them according to video production methods and video domains, and according to types of events and actions that are typical of these domains.

Keywords

Video annotation Event classification Action classification Survey 

Notes

Acknowledgement

This work is partially supported by the EU IST IM3I Project (Contract FP7-222267).

References

  1. 1.
    Akdemir U, Turaga P, Chellappa R (2008) An ontology based approach for activity recognition from video. In: Proc. of ACM multimedia (MM)Google Scholar
  2. 2.
    Arndt R, Troncy R, Staab S, Hardman L, Vacura M (2007) Comm: designing a well-founded multimedia ontology for the web. In: Proc. of int’l semantic web conferenceGoogle Scholar
  3. 3.
    Artikis A, Sergot M, Paliouras G (2010) A logic programming approach to activity recognition. In: Proc. of ACM int’l workshop on events in multimediaGoogle Scholar
  4. 4.
    Assfalg J, Bertini M, Del Bimbo A, Nunziati W, Pala P (2002) Soccer highlights detection and recognition using HMMs. In: Proc. of int’l conference on multimedia & expo (ICME)Google Scholar
  5. 5.
    Assfalg J, Bertini M, Colombo C, Del Bimbo A, Nunziati W (2003) Semantic annotation of soccer videos: automatic highlights identification. Comput Vis Image Underst 92(2–3):285–305CrossRefGoogle Scholar
  6. 6.
    Bai L, Lao S, Jones G, Smeaton AF (2007) Video semantic content analysis based on ontology. In: Proc. of int’l machine vision and image processing conferenceGoogle Scholar
  7. 7.
    Bai L, Lao S, Zhang W, Jones G, Smeaton A (2007) A semantic event detection approach for soccer video based on perception concepts and finite state machines. In: Proc. intl’l workshop on image analysis for multimedia interactive services (WIAMIS)Google Scholar
  8. 8.
    Ballan L, Bertini M, Del Bimbo A, Seidenari L, Serra G (2009) Recognizing human actions by fusing spatio-temporal appearance and motion descriptors. In: Proc. of int’l conference on image processing (ICIP). Cairo, EgyptGoogle Scholar
  9. 9.
    Ballan L, Bertini M, Del Bimbo A, Serra G (2010) Semantic annotation of soccer videos by visual instance clustering and spatial/temporal reasoning in ontologies. Multimed Tools Appl 48(2):313–337CrossRefGoogle Scholar
  10. 10.
    Ballan L, Bertini M, Del Bimbo A, Serra G (2010) Video event classification using string kernels. Multimed Tools Appl 48(1):69–87CrossRefGoogle Scholar
  11. 11.
    Ballan L, Bertini M, Del Bimbo A, Serra G (2010) Video annotation and retrieval using ontologies and rule learning. IEEE Multimed doi: 10.1109/MMUL.2004.4 Google Scholar
  12. 12.
    Basharat A, Zhai Y, Shah M (2008) Content based video matching using spatiotemporal volumes. Comput Vis Image Underst 110(3):360–377CrossRefGoogle Scholar
  13. 13.
    Bay H, Ess A, Tuytelaars T, Van Gool L (2008) SURF: speeded up robust features. Comput Vis Image Underst 110(3):346–359CrossRefGoogle Scholar
  14. 14.
    Bertini M, Del Bimbo A, Nunziati W (2005) Common visual cues for sports highlights modeling. Multimed Tools Appl 27(2):215–218CrossRefGoogle Scholar
  15. 15.
    Bertini M, Del Bimbo A, Torniai C, Cucchiara R, Grana C (2007) Dynamic pictorial ontologies for video digital libraries annotation. In: Proc. of ACM int’l workshop on many faces of multimedia semantics (MS)Google Scholar
  16. 16.
    Bertini M, Del Bimbo A, Serra G (2008) Learning ontology rules for semantic video annotation. In: Proc. of ACM int’l workshop on many faces of multimedia semantics (MS)Google Scholar
  17. 17.
    Bloehdorn S, Petridis K, Saathoff C, Simou N, Tzouvaras V, Avrithis Y, Handschuh S, Kompatsiaris I, Staab S, Strintzis M (2005) Semantic annotation of images and videos for multimedia analysis. In: Proc. of European semantic web conferenceGoogle Scholar
  18. 18.
    Brand M, Kettnaker V (2000) Discovery and segmentation of activities in video. IEEE Trans Pattern Anal Mach Intell 22(8):844–851CrossRefGoogle Scholar
  19. 19.
    Brezeale D, Cook D (2008) Automatic video classification: a survey of the literature. IEEE Trans Syst Man Cybern 38(3):416–430CrossRefGoogle Scholar
  20. 20.
    Chao C, Shih HC, Huang CL (2005) Semantics-based highlight extraction of soccer program using DBN. In: Proc. of int’l conference on acoustics, speech, and signal processing (ICASSP)Google Scholar
  21. 21.
    Chen D, Yang J, Wactlar HD (2004) Towards automatic analysis of social interaction patterns in a nursing home environment from video. In: Proc. of int’l workshop on multimedia information retrieval (MIR)Google Scholar
  22. 22.
    Chen M, Hauptmann A, Li H (2009) Informedia @ TRECVID2009: analyzing video motions. In: Proc. of the TRECVID workshopGoogle Scholar
  23. 23.
    Dasiopoulou S, Mezaris V, Kompatsiaris I, Papastathis VK, Strintzis MG (2005) Knowledge-assisted semantic video object detection. IEEE Trans Circuits Syst Video Technol 15(10):1210–1224CrossRefGoogle Scholar
  24. 24.
    Dasiopoulou S, Saathoff C, Mylonas P, Avrithis Y, Kompatsiaris Y, Staab S, Strintzis M (2008) Semantic multimedia and ontologies theory and applications, chapter introducing context and reasoning in visual content analysis: an ontology-based framework. Springer, pp 99–122Google Scholar
  25. 25.
    Dollar P, Rabaud V, Cottrell G, Belongie S (2005) Behavior recognition via sparse spatio-temporal features. In: Proc. of int’l workshop on visual surveillance and performance evaluation of tracking and surveillance (VS-PETS)Google Scholar
  26. 26.
    Dousson C, Le Maigat P (2007) Chronicle recognition improvement using temporal focusing and hierarchization. In: Proc. of int’l joint conference on artificial intelligenceGoogle Scholar
  27. 27.
    Dublin Core Metadata Initiative. http://dublincore.org/. Accessed 11 October 2010
  28. 28.
    Ebadollahi S, Xie L, Chang SF, Smith J (2006) Visual event detection using multi-dimensional concept dynamics. In: Proc. of int’l conference on multimedia & expo (ICME)Google Scholar
  29. 29.
    Fathi A, Mori G (2008) Action recognition by learning mid-level motion features. In: Proc. of int’l conference on computer vision and pattern recognition (CVPR)Google Scholar
  30. 30.
    Fellbaum C (1998) WordNet: an electronic lexical database, chap 3. A semantic network of English verbs. MIT, CambridgeGoogle Scholar
  31. 31.
    Fergus R, Perona P, Zisserman A (2003) Object class recognition by unsupervised scale-invariant learning. In: Proc. of int’l conference on computer vision and pattern recognition (CVPR)Google Scholar
  32. 32.
    Fihl P, Holte M, Moeslund T (2007) Motion primitives for action recognition. In: Proc. of int’l workshop on gesture in human-computer interaction and simulationGoogle Scholar
  33. 33.
    Francois A, Nevatia R, Hobbs J, Bolles R, Smith J (2005) VERL: an ontology framework for representing and annotating video events. IEEE Multimed 12(4):76–86CrossRefGoogle Scholar
  34. 34.
    Garcia R, Celma O (2005) Semantic integration and retrieval of multimedia metadata. In: Proc. of the knowledge markup and semantic annotation workshopGoogle Scholar
  35. 35.
    Georis B, Mazière M, Brémond F, Thonnat M (2004) A video interpretation platform applied to bank agency monitoring. In: Proc. of intelligent distributed surveillance systems workshopGoogle Scholar
  36. 36.
    Gruber T (1995) Principles for the design of ontologies used for knowledge sharing. Int J Human-comput Stud 43(5–6):907–928CrossRefGoogle Scholar
  37. 37.
    Hakeem A, Shah M (2004) Ontology and taxonomy collaborated framework for meeting classification. In: Proc. of int’l conference on pattern recognition (ICPR)Google Scholar
  38. 38.
    Harte N, Lennon D, Kokaram A (2009) On parsing visual sequences with the hidden Markov model. EURASIP JIVP 2009:1–13Google Scholar
  39. 39.
    Haubold A, Naphade M (2007) Classification of video events using 4-dimensional time-compressed motion features. In: Proc. of ACM international conference on image and video retrieval (CIVR), pp 178–185Google Scholar
  40. 40.
    Hollink L, Little S, Hunter J (2005) Evaluating the application of semantic inferencing rules to image annotation. In: Proc. of int’l conference on knowledge captureGoogle Scholar
  41. 41.
    Jhuang H, Garrote E, Yu X, Khilnani V, Poggio T, Steele A, Serre T (2010) Automated home-cage behavioral phenotyping of mice. Nature communications doi: 10.1038/ncomms.1064 Google Scholar
  42. 42.
    Kadir T, Brady M (2001) Saliency, scale and image description. Int J Comput Vis 45(2):83–105zbMATHCrossRefGoogle Scholar
  43. 43.
    Kale A, Sundaresan A, Rajagopalan AN, Cuntoor NP, Roy-Chowdhury AK, Kruger V, Chellappa R (2004) Identification of humans using gait. IEEE Trans Knowl Data Eng 13(9):1163–1173Google Scholar
  44. 44.
    Kennedy L (2006) Revision of LSCOM event/activity annotations, DTO challenge workshop on large scale concept ontology for multimedia. Advent technical report #221-2006-7, Columbia UniversityGoogle Scholar
  45. 45.
    Kienzle W, Scholkopf B, Wichmann F, Franz MO (2007) How to find interesting locations in video: a spatiotemporal interest point detector learned from human eye movements. In: Proc. of 29th annual symposium of the german association for pattern recognition. SpringerGoogle Scholar
  46. 46.
    Kläser A, Marszałek M, Schmid C (2008) A spatio-temporal descriptor based on 3D-Gradients. In: Proc. of British machine vision conference (BMVC)Google Scholar
  47. 47.
    Ko T (2008) A survey on behavior analysis in video surveillance for homeland security applications. In: 37th IEEE applied imagery pattern recognition workshop, pp 1–8Google Scholar
  48. 48.
    Kompatsiaris Y, Hobson P (2008) Semantic multimedia and ontologies: theory and applications. SpringerGoogle Scholar
  49. 49.
    Kowalski R, Sergot M (1986) A logic-based calculus of events. New Gener Comput 4(1):67–95CrossRefGoogle Scholar
  50. 50.
    Kuettel D, Breitenstein MD, Van Gool L, Ferrari V (2010) What’s going on? discovering spatio-temporal dependencies in dynamic scenes. In: Proc. of int’l conference on computer vision and pattern recognition (CVPR)Google Scholar
  51. 51.
    Laptev I, Lindeberg T (2003) Space-time interest points. In: Proc. of int’l conference on computer vision (ICCV)Google Scholar
  52. 52.
    Laptev I (2005) On space-time interest points. Int J Comput Vis 64(2–3):107–123CrossRefGoogle Scholar
  53. 53.
    Laptev I, Perez P (2007) Retrieving actions in movies. In: Proc. of int’l conference on computer vision (ICCV)Google Scholar
  54. 54.
    Laptev I, Marszalek M, Schmid C, Rozenfeld B (2008) Learning realistic human actions from movies. In: Proc. of int’l conference on computer vision and pattern recognition (CVPR)Google Scholar
  55. 55.
    Lavee G, Borzin A, Rivlin E, Rudzsky M (2007) Building Petri nets from video event ontologies. In: Proc. of international symposium on visual computing (ISVC). LNCS, vol 4841. Springer Verlag, pp 442–451Google Scholar
  56. 56.
    Lavee G, Rivlin E, Rudzsky M (2009) Understanding video events: a survey of methods for automatic interpretation of semantic occurrences in video. IEEE Trans Syst Man Cybern 39(5):489–504CrossRefGoogle Scholar
  57. 57.
    Lazebnik S, Schmid C, Ponce J (2006) Beyond bags of features: spatial pyramid matching for recognizing natural scene categories. In: Proc. of int’l conference on computer vision and pattern recognition (CVPR)Google Scholar
  58. 58.
    Leslie L, Chua TS, Ramesh J (2007) Annotation of paintings with high-level semantic concepts using transductive inference and ontology-based concept disambiguation. In: Proc. of ACM multimedia (MM)Google Scholar
  59. 59.
    Liu J, Shah M (2008) Learning human actions via information maximization. In: Proc. of int’l conference on computer vision and pattern recognition (CVPR)Google Scholar
  60. 60.
    Liu J, Luo J, Shah M (2009) Recognizing realistic actions from videos “in the wild”. In: Proc. of int’l conference on computer vision and pattern recognition (CVPR)Google Scholar
  61. 61.
    Lowe DG (2004) Distinctive image features from scale-invariant keypoints. Int J Comput Vis 60(2):91–110CrossRefGoogle Scholar
  62. 62.
    Luo M, Ma YF, Zhang HJ (2003) Pyramidwise structuring for soccer highlight extraction. In: Proc. of ICICS-PCMGoogle Scholar
  63. 63.
    Mahadevan V, Li W, Bhalodia V, Vasconcelos N (2010) Anomaly detection in crowded scenes. In: Proc. of int’l conference on computer vision and pattern recognition (CVPR)Google Scholar
  64. 64.
    Maillot N, Thonnat M (2008) Ontology based complex object recognition. Image Vis Comput 26(1):102–113CrossRefGoogle Scholar
  65. 65.
    Marszalek M, Laptev I, Schmid C (2009) Actions in context. In: Proc. of int’l conference on computer vision and pattern recognition (CVPR)Google Scholar
  66. 66.
    Mehran R, Moore B, Shah M (2010) A streakline representation of flow in crowded scenes. In: Proc. of European conference on computer vision (ECCV)Google Scholar
  67. 67.
    Mikolajczyk K, Schmid C (2005) A performance evaluation of local descriptors. IEEE Trans Pattern Anal Mach Intell 27(10):1615–1630CrossRefGoogle Scholar
  68. 68.
    Mikolajczyk K, Tuytelaars T, Schmid C, Zisserman A, Matas J, Schaffalitzky F, Kadir T, Van Gool L (2005) A comparison of affine region detectors. Int J Comput Vis 65(1/2):43–72CrossRefGoogle Scholar
  69. 69.
    Mikolajczyk K, Uemura H (2008) Action recognition with motion-appearance vocabulary forest. In: Proc. of int’l conference on computer vision and pattern recognition (CVPR)Google Scholar
  70. 70.
    Miller JA, Baramidze G (2005) Simulation and the semantic web. In: Proc. of the winter simulation conference (WSC)Google Scholar
  71. 71.
    Naphade M, Smith J, Tesic J, Chang SF, Kennedy L, Hauptmann A, Curtis J (2006) Large-scale concept ontology for multimedia. IEEE Multimed 13(3):86–91CrossRefGoogle Scholar
  72. 72.
    Neumann B, Moeller R (2006) On scene interpretation with description logics. In: Cognitive vision systems: sampling the spectrum of approaches. Lecture notes in computer science, vol 3948. Springer, pp 247–278Google Scholar
  73. 73.
    Nevatia R, Hobbs J, Bolles B (2004) An ontology for video event representation. In: Proc. of the conference on computer vision and pattern recognition workshop (CVPRW)Google Scholar
  74. 74.
    Niebles J, Fei-Fei L (2007) A hierarchical model of shape and appearance for human action classification. In: Proc. of int’l conference on computer vision and pattern recognition (CVPR)Google Scholar
  75. 75.
    Nister D, Stewenius H (2006) Scalable recognition with a vocabulary tree. In: Proc. of int’l conference on computer vision and pattern recognition (CVPR)Google Scholar
  76. 76.
    Nowak E, Jurie F, Triggs B (2006) Sampling strategies for bag-of-features image classification. In: Proc. of European conference on computer vision (ECCV)Google Scholar
  77. 77.
    Oikonomopoulos A, Patras I, Pantic M (2005) Spatiotemporal salient points for visual recognition of human actions. IEEE Trans Syst Man Cybern 36:719Google Scholar
  78. 78.
    Over P, Awad G, Fiscus J, Michel M, Smeaton AF, Kraaij W (2009) TRECVid 2009–goals, tasks, data, evaluation mechanisms and metrics. In: Proc. of the TRECVID workshop. Gaithersburg, USAGoogle Scholar
  79. 79.
    Paschke A, Bichler M (2008) Knowledge representation concepts for automated SLA management. Decis Support Syst 46(1):187–205CrossRefGoogle Scholar
  80. 80.
    Pattanasri N, Jatowt A, Tanaka K (2006) Enhancing comprehension of events in video through explanation-on-demand hypervideo. In: Advances in multimedia modeling. Lecture notes in computer science, vol 4351. Springer, pp 535–544Google Scholar
  81. 81.
    Poppe R (2010) A survey on vision-based human action recognition. Image Vis Comput 28(6):976–990CrossRefGoogle Scholar
  82. 82.
    Sadlier D, O’Connor N (2005) Event detection in field sports video using audio–visual features and a support vector machine. IEEE Trans Circuits Syst Video Technol 15(10):1225–1233CrossRefGoogle Scholar
  83. 83.
    SanMiguel J, Martinez J, Garcia A (2009) An ontology for event detection and its application in surveillance video. In: Proc. of int’l conference on advanced video and signal-based surveillance (AVSS)Google Scholar
  84. 84.
    Savarese S, Winn J, Criminisi A (2006) Discriminative object class models of appearance and shape by correlatons. In: Proc. of int’l conference on computer vision and pattern recognition (CVPR)Google Scholar
  85. 85.
    Savarese S, Del Pozo A, Niebles JC, Fei-Fei L (2008) Spatial-temporal correlatons for unsupervised action classification. In: Proc. of workshop on motion and video computingGoogle Scholar
  86. 86.
    Scherp A, Franz T, Saathoff C, Staab S (2009) F–a model of events based on the foundational ontology DOLCE+DnS ultralight. In: Proc. of int’l conference on knowledge capture (K-CAP)Google Scholar
  87. 87.
    Schuldt C, Laptev I, Caputo B (2004) Recognizing human actions: a local SVM approach. In: Proc. of int’l conference on pattern recognition (ICPR)Google Scholar
  88. 88.
    Scovanner P, Ali S, Shah M (2007) A 3-Dimensional SIFT descriptor and its application to action recognition. In: Proc. of ACM multimedia (MM)Google Scholar
  89. 89.
    Seidenari L, Bertini M (2010) Non-parametric anomaly detection exploiting space-time features. In: Proc. of ACM multimedia (MM)Google Scholar
  90. 90.
    Shet V, Harwood D, Davis L (2005) Vidmap: video monitoring of activity with prolog. In: Proc. of IEEE int’l conference on advanced video and signal-based surveillance (AVSS)Google Scholar
  91. 91.
    Sivic J, Zisserman A (2003) Video google: a text retrieval approach to object matching in videos. In: Proc. of int’l conference on computer vision (ICCV)Google Scholar
  92. 92.
    Smeaton AF, Over P, Kraaij W (2006) Evaluation campaigns and TRECVid. In: Proc. of int’l workshop on multimedia information retrieval (MIR)Google Scholar
  93. 93.
    Snidaro L, Belluz M, Foresti G (2007) Domain knowledge for surveillance applications. In: Proc. of int’l conference on information fusionGoogle Scholar
  94. 94.
    Snoek C, Worring M (2005) Multimodal video indexing: A review of the state-of-the-art. Multimed Tools Appl 25(1):5–35CrossRefGoogle Scholar
  95. 95.
    Tran SD, Davis LS (2008) Event modeling and recognition using Markov logic networks. In: Proc. of European conference on computer vision (ECCV)Google Scholar
  96. 96.
    Tsinaraki C, Polydoros P, Kazasis F, Christodoulakis S (2005) Ontology-based semantic indexing for MPEG-7 and TV-Anytime audiovisual content. Multimed Tools Appl 26(3):299–325CrossRefGoogle Scholar
  97. 97.
    TV Anytime Forum. http://www.tv-anytime.org/. Accessed 11 October 2010
  98. 98.
    Vezzani R, Cucchiara R (2010) Video surveillance online repository (ViSOR): an integrated framework. Multimed Tools Appl 50(2):359–380. http://www.openvisor.org CrossRefGoogle Scholar
  99. 99.
    Viola PA, Jones MJ (2001) Rapid object detection using a boosted cascade of simple features. In: Proc. of int’l conference on computer vision and pattern recognition (CVPR)Google Scholar
  100. 100.
    Wang Xj, Mamadgi S, Thekdi A, Kelliher A, Sundaram H (2007) Eventory—an event based media repository. In: Proc of the int’l conference on semantic computing (ICSC)Google Scholar
  101. 101.
    Wang F, Jiang YG, Ngo CW (2008) Video event detection using motion relativity and visual relatedness. In: Proc. of ACM multimedia (MM)Google Scholar
  102. 102.
    Willems G, Tuytelaars T, Van Gool L (2008) An efficient dense and scale-invariant spatio-temporal interest point detector. In: Proc. of European conference on computer vision (ECCV)Google Scholar
  103. 103.
    Winder SAJ, Hua G, Brown M (2009) Picking the best DAISY. In: Proc. of int’l conference on computer vision and pattern recognition (CVPR)Google Scholar
  104. 104.
    Wong SF, Cipolla R (2007) Extracting spatiotemporal interest points using global information. In: Proc. of int’l conference on computer vision (ICCV)Google Scholar
  105. 105.
    Wong SF, Kim TK, Cipolla R (2007) Learning motion categories using both semantic and structural information. In: Proc. of int’l conference on computer vision and pattern recognition (CVPR)Google Scholar
  106. 106.
    Xu D, Chang SF (2008) Video event recognition using kernel methods with multilevel temporal alignment. IEEE Trans Pattern Anal Mach Intell 30(11):1985–1997CrossRefGoogle Scholar
  107. 107.
    Xu P, Xie L, Chang SF, Divakaran A, Vetro A, Sun H (2001) Algorithms and system for segmentation and structure analysis in soccer video. In: Proc. of int’l conference on multimedia & expo (ICME)Google Scholar
  108. 108.
    Xu G, Ma YF, Zhang HJ, Yang S (2003) A HMM based semantic analysis framework for sports game event detection. In: Proc. of IEEE int’l conference on image processing (ICIP). Barcelona, SpainGoogle Scholar
  109. 109.
    Yang J, Hauptmann AG (2006) Exploring temporal consistency for video analysis and retrieval. In: Proc. of int’l workshop on multimedia information retrieval (MIR)Google Scholar
  110. 110.
    Yang J, Jiang YG, Hauptmann AG, Ngo CW (2007) Evaluating bag-of-visual-words representations in scene classification. In: Proc. of int’l workshop on multimedia information retrieval (MIR)Google Scholar
  111. 111.
    Zhan B, Monekosso D, Remagnino P, Velastin S, Xu LQ (2008) Crowd analysis: a survey. Mach Vis Appl 19:345–357zbMATHCrossRefGoogle Scholar
  112. 112.
    Zhang J, Marszałek M, Lazebnik S, Schmid C (2007) Local features and kernels for classification of texture and object categories: a comprehensive study. Int J Comput Vis 73(2):213–238CrossRefGoogle Scholar
  113. 113.
    Zhou X, Zhuang X, Yan S, Chang SF, Hasegawa-Johnson M, Huang T (2008) SIFT-bag kernel for video event analysis. In: Proc. of ACM multimedia (MM), pp 229–238Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Lamberto Ballan
    • 1
  • Marco Bertini
    • 1
    Email author
  • Alberto Del Bimbo
    • 1
  • Lorenzo Seidenari
    • 1
  • Giuseppe Serra
    • 1
  1. 1.Media Integration and Communication CenterUniversity of FlorenceFlorenceItaly

Personalised recommendations