Multimedia Tools and Applications

, Volume 55, Issue 3, pp 379–398 | Cite as

Semantic adaptation of multimedia documents

  • Sébastien LaborieEmail author
  • Jérôme Euzenat
  • Nabil Layaïda


Multimedia documents have to be played on multiple device types. Hence, usage and platform diversity requires document adaptation according to execution contexts, not generally predictable at design time. In an earlier work, a semantic framework for multimedia document adaptation was proposed. In this framework, a multimedia document is interpreted as a set of potential executions corresponding to the author specification. To each target device corresponds a set of possible executions complying with the device constraints. In this context, adapting requires to select an execution that satisfies the target device constraints and which is as close as possible from the initial composition. This theoretical adaptation framework does not specifically consider the main multimedia document dimensions, i.e., temporal, spatial and hypermedia. In this paper, we propose a concrete application of this framework on standard multimedia documents. For that purpose, we first define an abstract structure that captures the spatio-temporal and hypermedia dimensions of multimedia documents, and we develop an adaptation algorithm which transforms in a minimal way such a structure according to device constraints. Then, we show how this can be used for adapting concrete multimedia documents in SMIL through converting the documents in the abstract structure, using the adaptation algorithm, and converting it back in SMIL. This can be used for other document formats without modifying the adaptation algorithm.


Multimedia document transformation Qualitative representation and reasoning SMIL 


  1. 1.
    Allen J (1983) Maintaining knowledge about temporal intervals. Commun ACM 26(11):832–843zbMATHCrossRefGoogle Scholar
  2. 2.
    Amous I, Jedidi A, Sèdes F (2005) A contribution to multimedia document modeling and querying. Multimed Tools Appl 25(3):391–404CrossRefGoogle Scholar
  3. 3.
    Asadi MK, Dufourd JC (2004) Knowledge-based and semantic adaptation of multimedia content. In: Hobson P, Izquierdo E, Kompatsiaris Y, O’Connor NE (eds) Knowledge-based media analysis for self-adaptive and agile multimedia technology, pp 285–293Google Scholar
  4. 4.
    Ayars J, Bulterman D, Cohen A, Day K, Hodge E, Hoschka P, Hyche E, Jourdan M, Kim M, Kubota K, Lanphier R, Layaïda N, Michel T, Newman D, van Ossenbruggen J, Rutledge L, Saccocio B, Schmitz P, ten Kate W (2005) Synchronized multimedia integration language (SMIL 2.0), 2nd edn. W3C
  5. 5.
    Badros GJ, Borning A, Stuckey PJ (2001) The cassowary linear arithmetic constraint solving algorithm. ACM Trans Comput-Hum Interact (TOCHI) 8(4):267–306CrossRefGoogle Scholar
  6. 6.
    Bilasco IM, Gensel J, Villanova-Oliver M (2005) STAMP: a model for generating adaptable multimedia presentations. Multimed Tools Appl 25(3):361–375 (Special issue on metadata and adaptibility in web-based information systems)CrossRefGoogle Scholar
  7. 7.
    Bormans J, Hill K (2002) MPEG-21 overview v.5. ISO/IEC JTC1/SC29/WG11/N5231.
  8. 8.
    Bra PD, Smits D, Stash N (2006) The design of AHA! In: Wiil UK, Nürnberg PJ, Rubart J (eds) Proceedings of the 17th ACM conference on hypertext and hypermedia ACM Press, pp 133–134Google Scholar
  9. 9.
    Brusilovsky P (1996) Methods and techniques of adaptive hypermedia. User Model User-Adapt Interact 6(2–3):87–129CrossRefGoogle Scholar
  10. 10.
    Condotta JF, Ligozat G, Saade M (2007) Eligible and frozen constraints for solving temporal qualitative constraint networks. In: Proceedings of the 13th international conference on principles and practice of constraint programming, pp 806–814Google Scholar
  11. 11.
    Euzenat J, Layaïda N, Dias V (2003) A semantic framework for multimedia document adaptation. In: Proceedings of the 18th international joint conference on artificial intelligence, pp 31–36Google Scholar
  12. 12.
    Freksa C (1992) Temporal reasoning based on semi-intervals. Artif Intell 54(1–2):199–227MathSciNetCrossRefGoogle Scholar
  13. 13.
    Gerevini A, Nebel B (2002) Qualitative spatio-temporal reasoning with RCC-8 and Allen’s interval calculus: computational complexity. In: Proceedings of the 15th European conference on artificial intelligence, pp 312–316Google Scholar
  14. 14.
    Geurts J, van Ossenbruggen J, Hardman L (2001) Application-specific constraints for multimedia presentation generation. In: Proceedings of the international conference on multimedia modeling, pp 247–266Google Scholar
  15. 15.
    Grifoni P (2009) Multimodal fission. In: Grifoni P (ed) Multimodal human computer interaction and pervasive services, chapter 6. IGI Global, pp 103–120Google Scholar
  16. 16.
    Hardman L, Bulterman DCA, van Rossum G (1994) The Amsterdam hypermedia model: adding time and context to the Dexter model. Commun ACM 37(2):50–62CrossRefGoogle Scholar
  17. 17.
    He J, Gao T, Hao W, Yen IL, Bastani F (2007) A flexible content adaptation system using a rule-based approach. IEEE Trans Knowl Data Eng 19(1):127–140CrossRefGoogle Scholar
  18. 18.
    Jannach D, Leopold K, Timmerer C, Hellwagner H (2006) A knowledge-based framework for multimedia adaptation. Appl Intell 24(2):109–125CrossRefGoogle Scholar
  19. 19.
    Kirda E, Kerer C (2005) DIWE: A framework for constructing device-independent web applications. In: Ubiquitous Mobile Information and Collaboration Systems, LNCS 3272, Springer, pp 96–110Google Scholar
  20. 20.
    Klyne G, Reynolds F, Woodrow C, Ohto H, Hjelm J, Butler MH, Tran L (2001) Composite capability/preference profiles (CC/PP): Structure and vocabularies 1.0. W3C.
  21. 21.
    Laborie S (2006) Spatio-temporal proximities for multimedia document adaptation. In: Proceedings of the 12th international conference on artificial intelligence: methodology, systems, applications. LNAI 4183, Springer, pp 128–137Google Scholar
  22. 22.
    Laborie S (2009) A screencast of our SMIL document adaptation prototype.
  23. 23.
    Laborie S, Euzenat J (2008) An incremental framework for adapting the hypermedia structure of multimedia documents. In: Wallace M, Angelides M, Mylonas P (eds) Advances in semantic media adaptation and personalization of studies in computational intelligence series, chapter 8, vol 93, Springer, pp 157–176Google Scholar
  24. 24.
    Laborie S, Euzenat J, Layaïda N (2006) A spatial algebra for multimedia document adaptation. In: Poster proceedings of the first international conference on semantic and digital media technologies, pp 7–8Google Scholar
  25. 25.
    Layaïda N (1997) Madeus: système d’édition et de présentation de documents structurés multimédia. PhD thesis, Université Joseph Fourier (Grenoble, France)Google Scholar
  26. 26.
    Lei Z, Georganas ND (2001) Context-based media adaptation in pervasive computing. In: Proceedings of Canadian conference on electrical and computer engineering, vol 2, pp 913–918Google Scholar
  27. 27.
    Lemlouma T, Layaïda N (2001) The negotiation of multimedia content services in heterogeneous environments. In: Proceedings of the 8th international conference on multimedia modeling, pp 187–206Google Scholar
  28. 28.
    Lemlouma T, Layaïda N (2004) Context-aware adaptation for mobile devices. In: Proceedings of the 5th IEEE international conference on mobile data management, pp 106–111Google Scholar
  29. 29.
    Nebel B (1996) Solving hard qualitative temporal reasoning problems: evaluating the efficiency of using the ORD-horn class. In: Proceedings of the 12th European conference on artificial intelligence, pp 38–42Google Scholar
  30. 30.
    Open Mobile Alliance (2008) Multimedia messaging service conformance document.
  31. 31.
    Rabin J, McCathieNevile C (2008) Mobile Web best practices 1.0. W3C.
  32. 32.
    Randell DA, Cui Z, Cohn A (1992) A spatial logic based on regions and connection. In: Nebel B, Rich C, Swartout W (eds) Principles of knowledge representation and reasoning: Proceedings of the third international conference, Morgan Kaufmann, pp 165–176Google Scholar
  33. 33.
    Roisin C (1998) Authoring structured multimedia documents. In: Proceedings of the conference on current trends in theory and practice of informatics, pp 222–239Google Scholar
  34. 34.
    Rousseau F, García-Marcías JA, de Lima JV, Duda A (1999) User adaptable multimedia presentations for the world wide web. In: Proceedings of the 8th international conference on world wide web, Elsevier North-Holland, Inc, pp 1273–1290Google Scholar
  35. 35.
    Scherp A, Boll S (2005) MM4U - a framework for creating personalized multimedia content. In: Managing multimedia semantics, chapter 11. IRM Press, pp 246–287Google Scholar
  36. 36.
    Shao B, Velazquez LM, Scaringella N, Singh N, Mattavelli M (2006) SMIL to MPEG-4 BIFS conversion. In: AXMEDIS ’06: Proceedings of the second international conference on automated production of cross media content for multi-channel distribution, IEEE computer society, pp 77–84Google Scholar
  37. 37.
    van Beek P, Manchak DW (1996) The design and experimental analysis of algorithms for temporal reasoning. J Artif Intell Res 4:1–18zbMATHGoogle Scholar
  38. 38.
    Vetro A, Christopoulos C, Ebrahimi T (eds) (2003) From the guest editors - universalmultimedia access. In: IEEE signal processing magazine, special issue on universal multimedia access, vol 20 of 2. IEEE Press, p 16Google Scholar
  39. 39.
    W3C (2005) Mobile web initiative.
  40. 40.
    W3C (2010) Ubiquitous Web Domain.

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Sébastien Laborie
    • 1
    Email author
  • Jérôme Euzenat
    • 2
  • Nabil Layaïda
    • 2
  1. 1.IRIT – Université Paul SabatierToulouse Cedex 9France
  2. 2.INRIA Grenoble Rhône-Alpes & LIGSaint Ismier CedexFrance

Personalised recommendations