Multimedia Tools and Applications

, Volume 49, Issue 3, pp 463–481 | Cite as

Energy-based blob analysis for improving precision of skin segmentation

  • Michal Kawulok


This paper addresses a problem of precise skin segmentation necessary for sign language recognition purposes. The main contribution of the presented research is an adaptive skin model enhanced with a blob analysis algorithm which significantly reduces false positives and improves skin segmentation precision. Adaptive skin detector utilizes a statistical skin color model updated dynamically based on a face region defined by eye positions. Face geometry is used for face and eye detection in luminance channel prior to the model adaptation. Color-based skin detectors classify every pixel separately which results in high false positives for background pixels which color is similar to human skin. The proposed blob analysis technique verifies detected skin regions by taking into account pixel topology. The experiments for ECU database showed that with the proposed approach false positive rate was reduced from 15.6% to 6% compared with a statistical model in RGB, which can be regarded as a significant improvement.


Skin segmentation Blob detection Face detection Gesture recognition 


  1. 1.
    Albiol A, Torres L, Delp EJ (2001) Optimum color spaces for skin detection. Proc Int Conf Image Processing 1:122–124Google Scholar
  2. 2.
    Argyros A, Lourakis M (2004) Real-time tracking of multiple skin-colored objects with a possibly moving camera. Lect Notes Comput Sci 3023:368–379Google Scholar
  3. 3.
    Ballard DH (1981) Generalizing the Hough transform to detect arbitrary shapes. Pattern Recogn 13:111–122zbMATHCrossRefGoogle Scholar
  4. 4.
    Brand J, Mason J (2000) A comparative assessment of three approaches to pixel-level human skin-detection. Proc Int Conf Pattern Recogn 1:1056–1059Google Scholar
  5. 5.
    Cortes C, Vapnik V (1995) Support-vector networks. Mach Learn 20(3):273–297zbMATHGoogle Scholar
  6. 6.
    Fang G, Gao W, Zhao D (2004) Large vocabulary sign language recognition based on fuzzy decision trees. IEEE Trans Syst Man Cybern 34:305–314CrossRefGoogle Scholar
  7. 7.
    Filipe T, Tiago C, Hamid S (2003) Improved automatic skin detection in color images. In: VIIIth digital image comp: techniques & applications, pp 419–427Google Scholar
  8. 8.
    Fleuret F, Geman D (2001) Coarse-to-fine face detection. Int J Comput Vis 41:85–107zbMATHCrossRefGoogle Scholar
  9. 9.
    Forsyth DA, Fleck M (1999) Automatic detection of human nudes. Int J Comput Vis 32(1):63–77CrossRefGoogle Scholar
  10. 10.
    Fotouhi M, Rohban MH, Kasaei S (2009) Skin detection using contourlet-based texture analysis. In: Int conf on digital telecommunications, pp 59–64Google Scholar
  11. 11.
    Fritsch J, Lang S, Kleinehagenbrock M, Fink GA, Sagerer G (2002) Improving adaptive skin color segmentation by incorporating results from face detection. In: Proc of IEEE int workshop on robot and human interactive communication. Berlin, Germany, pp 337–343CrossRefGoogle Scholar
  12. 12.
    Gomez G, Moralez E (2002) Automatic feature construction and a simple rule induction algorithm for skin detection. In: Proc of the ICML workshop on machine learning in computer vision, pp 31–38Google Scholar
  13. 13.
    Han CC, Liao HYM, Yu KC, Chen LH (1998) Fast face detection via morphology-based pre-processing. In: Proc of ninth int conf on image analisis and processing, pp 469–476Google Scholar
  14. 14.
    Hernandez-Rebollar JL, Kyriakopoulos N, Lindeman RW (2004) A new instrumented approach for translating American Sign Language into sound and text. In: Proc of 6th IEEE int conf on automatic face and gesture recognition, pp 547–552Google Scholar
  15. 15.
    Hsu RL, Abdel-Mottaleb M, Jain AK (2002) Face detection in color images. IEEE Trans Pattern Anal Mach Intell 24(5):696–706CrossRefGoogle Scholar
  16. 16.
    Ikonen L, Toivanen P (2006) Distance and nearest neighbor transforms on gray-level surfaces. Pattern Recogn Lett 28:604-612CrossRefGoogle Scholar
  17. 17.
    Imagawa I, Matsuo H, Taniguchi R, Arita D, Shan L, Igi S (2000) Recognition of local features for camera-based sign language recognition system. In: Proc of 15th int conf on pattern recognition, vol 4, pp 849–853Google Scholar
  18. 18.
    Jones MJ, Rehg JM (2002) Statistical color models with application to skin detection. Int J Comput Vis 46(1):81–96zbMATHCrossRefGoogle Scholar
  19. 19.
    Kawulok M (2005) Application of support vector machines in automatic human face recognition. J Med Inform Technol 9:143–150Google Scholar
  20. 20.
    Kawulok M (2008) Dynamic skin detection in color images for sign language recognition. Lect Notes Comput Sci 5099:112–119CrossRefGoogle Scholar
  21. 21.
    Kawulok M, Szymanek J (2009) Algorithm for precise frontal face detection. Stud Inform 30(2A):341–354Google Scholar
  22. 22.
    Kovac J, Peer P, Solina F (2003) Human skin colour clustering for face detection, Eurocon 2003. Ljubliana, Slovenia, pp 144–148Google Scholar
  23. 23.
    Kruppa H, Bauer MA, Schiele B (2002) Skin patch detection in real-world images. In: Annual symposium for pattern recognition of the DAGM 2002, vol 2449. Lecture notes in computer science, pp 109–117Google Scholar
  24. 24.
    Kukharev G, Nowosielski A (2004) Fast and efficient algorithm for face detection in colour images. Mach Graph Vis 13(4):377-399Google Scholar
  25. 25.
    Lagodzinski P, Smolka B (2008) Digital image colorization based on probabilistic distance transform. CIARP 2008. Lect Notes Comput Sci 5197:626–634CrossRefGoogle Scholar
  26. 26.
    Lienhart R, Maydt J (2002) An extended Set of haar-like features for rapid object detection. IEEE Proc Int Conf Image Processing 1:900–903CrossRefGoogle Scholar
  27. 27.
    Maio D, Maltoni D (2000) Real-time face location on gray-scale static images. Pattern Recogn 33(9):1525–1539CrossRefGoogle Scholar
  28. 28.
    Mikolajczyk K, Schmid C (2004) Scale and affine invariant interest point detectors. Int J Comput Vis 60:63–86CrossRefGoogle Scholar
  29. 29.
    Ming-Hsuan Y, Ahuja N, Tabb M (2002) Extraction of 2D motion trajectories and its application to hand gesture recognition. IEEE Trans Pattern Anal Mach Intell 24:1061–1074CrossRefGoogle Scholar
  30. 30.
    Nurzynska K (2006) Are the skin colour detectors stable in changing lighting conditions? VIIIth international workshop for candidates for a doctors’ degree. Wisla, PolandGoogle Scholar
  31. 31.
    Osuna E, Freund R, Girosi F (1997) Training support vector machines: an application to face detection. In: Proc of IEEE conf on computer vision and pattern recognition, pp 130–136Google Scholar
  32. 32.
    Phung SL, Chai D, Bouzerdoum A (2003) Adaptive skin segmentation in color images. In: Proc of int conf on acoustic, speech and signal processing (ICASSP), vol 3, pp 353–353Google Scholar
  33. 33.
    Rowley H, Baluja S, Kanade T (1996) Neural network-based face detection. In: Proc of IEEE conf on computer vision and pattern recognition, pp 203–208Google Scholar
  34. 34.
    Sarfaz M, Syed YA, Zeeshan M (2005) A system for sign language recognition using fuzzy object similarity tracking. In: Proc of 9th int conf on information visualisation, pp 233–238Google Scholar
  35. 35.
    Soriano M, Martinkauppi B, Huovinen S, Laaksonen M (2000) Skin detection in video under changing illumination conditions. In: Proc of int conf on pattern recognition (ICPR’00), vol 1, pp 1839–1842Google Scholar
  36. 36.
    Suszczanska N, Szmal P, Francik J (2002) Translating polish texts into sign language in the TGT system. In: Proc of 20th IASTED international multi-conference applied informatics. Innsbruck, Austria, pp 282–287Google Scholar
  37. 37.
    Terrillon JC, David M, Akamatsu S (1998) Automatic detection of human faces in natural scene images by use of a skin color model and of invariant moments. In: Proc of the 3rd int conf on automatic face and gesture recognition. Nara, Japan, pp 112–117CrossRefGoogle Scholar
  38. 38.
    Tsekeridou S, Pitas I (1998) Facial feature extraction in frontal views using biometric analogies. In: Proc of EUSIPCO ’98. Rhodes, Greece, pp 315–318Google Scholar
  39. 39.
    Turk M, Pentland A (1991) Face recognition using Eigenfaces. In: Proc of IEEE conf on computer vision and pattern recognition, pp 586–591Google Scholar
  40. 40.
    Viola P, Jones MJ (2001) Rapid object detection using a boosted cascade of simple features. In: Proc of IEEE conf on computer vision and pattern recognition, pp 511–518Google Scholar
  41. 41.
    Viola P, Jones MJ (2004) Robust real-time face detection. Int J Comput Vis 57(2):137–154CrossRefGoogle Scholar
  42. 42.
    Vogler C, Metaxas D (1998) ASL recognition based on a coupling between HMMs and 3D motion analysis. In: Proc of 6th int conf on computer vision, pp 363–369Google Scholar
  43. 43.
    Wang P, Ji Q (2007) Multi-view face and eye detection using discriminant features. Comput Vis Image Underst 105(2):99–111CrossRefGoogle Scholar
  44. 44.
    Yang G, Huang TS (1994) Human face detection in complex background. Pattern Recogn 27:1877–1889CrossRefGoogle Scholar
  45. 45.
    Yang MH, Kriegman DJ, Ahuja N (2002) Detecting faces in images: a survey. IEEE Trans Pattern Anal Mach Intell 24:34–58CrossRefGoogle Scholar
  46. 46.
    Zhao W, Chellappa R, Phillips PJ, Rosenfeld A (2003) Face recognition: a literature survey. ACM Comput Surv 35(4):399–458CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Institute of InformaticsSilesian University of TechnologyGliwicePoland

Personalised recommendations