Multimedia Tools and Applications

, Volume 50, Issue 1, pp 75–94

Performance analysis for automated gait extraction and recognition in multi-camera surveillance

  • Michela Goffredo
  • Imed Bouchrika
  • John N. Carter
  • Mark S. Nixon
Article

DOI: 10.1007/s11042-009-0378-5

Cite this article as:
Goffredo, M., Bouchrika, I., Carter, J.N. et al. Multimed Tools Appl (2010) 50: 75. doi:10.1007/s11042-009-0378-5

Abstract

Many studies have confirmed that gait analysis can be used as a new biometrics. In this research, gait analysis is deployed for people identification in multi-camera surveillance scenarios. We present a new method for viewpoint independent markerless gait analysis that does not require camera calibration and works with a wide range of walking directions. These properties make the proposed method particularly suitable for gait identification in real surveillance scenarios where people and their behaviour need to be tracked across a set of cameras. Tests on 300 synthetic and real video sequences, with subjects walking freely along different walking directions, have been performed. Since the choice of the cameras’ characteristics is a key-point for the development of a smart surveillance system, the performance of the proposed approach is measured with respect to different video properties: spatial resolution, frame-rate, data compression and image quality. The obtained results show that markerless gait analysis can be achieved without any knowledge of camera’s position and subject’s pose. The extracted gait parameters allow recognition of people walking from different views with a mean recognition rate of 92.2% and confirm that gait can be effectively used for subjects’ identification in a multi-camera surveillance scenario.

Keywords

Gait analysis Gait recognition Biometrics Multi-view Surveillance Object handover 

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Michela Goffredo
    • 1
  • Imed Bouchrika
    • 1
  • John N. Carter
    • 1
  • Mark S. Nixon
    • 1
  1. 1.School of Electronics and Computer ScienceUniversity of SouthamptonSouthamptonUK

Personalised recommendations