Multimedia Tools and Applications

, Volume 49, Issue 2, pp 371–403 | Cite as

Tracking people in video sequences using multiple models

  • Manuel LucenaEmail author
  • José M. Fuertes
  • Nicolás Pérez de la Blanca
  • Manuel J. Marín-Jiménez


This paper presents a multiple model real-time tracking technique for video sequences, based on the mean-shift algorithm. The proposed approach incorporates spatial information from several connected regions into the histogram-based representation model of the target, and enables multiple models to be used to represent the same object. The use of several regions to capture the color spatial information into a single combined model, allow us to increase the object tracking efficiency. By using multiple models, we can make the tracking scheme more robust in order to work with sequences with illumination and pose changes. We define a model selection function that takes into account both the similarity of the model with the information present in the image, and the target dynamics. In the tracking experiments presented, our method successfully coped with lighting changes, occlusion, and clutter.


Non-rigid object tracking Target representation and localization 



This work has been financed by Grant TIC-2001-3316 and TIC-2005-1665 from the Spanish Ministry of Science and Technology.


  1. 1.
    Arnaud E, Memin E, Cernuschi-Frias B (2005) Conditional filters for image sequence-based tracking—application to point tracking. IEEE Trans Image Process 14:63–79CrossRefMathSciNetGoogle Scholar
  2. 2.
    Birchfield S, Rangarajan S (2005) Spatiograms versus histograms for region-based tracking. Proc IEEE Conf Comput Vis Pattern Recognit 2:1158–1163Google Scholar
  3. 3.
    Bradski G (1998) Real time face and object tracking as a component of a perceptual user interface. In: Proceedings of the 4th IEEE workshop applications of computer vision, pp 214–219Google Scholar
  4. 4.
    Bradski GR (1998) Computer vision face tracking for use in a perceptual user interface. Intel Technol J 2Google Scholar
  5. 5.
    Collins RT (2003) Mean-shift blob tracking through scale space. IEEE Conf Comput Vis Pattern Recognit 2:234–240Google Scholar
  6. 6.
    Comaniciu D, Meer P (2002) Mean shift: a robust approach toward feature space analysis. IEEE Trans Pattern Anal Mach Intell 24:603–619CrossRefGoogle Scholar
  7. 7.
    Comaniciu D, Ramesh V, Meer P (2003) Kernel-based object tracking. IEEE Trans Pattern Anal Mach Intell 25:564–577CrossRefGoogle Scholar
  8. 8.
    Deutscher J, Blake A et al (1999) Tracking through singularities and discontinuities by random sampling. In: Proceedings of international conference on computer vision, vol 2, pp 1144–1149Google Scholar
  9. 9.
    Felzenszwalb P, Huttenlocher D (2000) Efficient matching of pictorial structures. Proc IEEE Conf Comput Vis Pattern Recognit 2:66–73Google Scholar
  10. 10.
    Fleuret F, Berclaz J et al (2008) Multicamera people tracking with a probabilistic occupancy map. IEEE Trans Pattern Anal Mach Intell 30:267–282CrossRefGoogle Scholar
  11. 11.
    Gualdi G, Albarelli A et al (2008) Using dominant sets for object tracking with freely moving camera. In: Proceedings of the 8th international workshop on visual surveillanceGoogle Scholar
  12. 12.
    Isard M, Blake A (1998) Condensation—conditional density propagation for visual tracking. Int J Comput Vis 29:5–28CrossRefGoogle Scholar
  13. 13.
    Kailath T (1967) The divergence and Bhatacharyya distance measures in signal selection. IEEE Trans Commun Technol 15:52–60CrossRefGoogle Scholar
  14. 14.
    Kalman RE (1960) A new approach to linear filtering and prediction problems. Trans ASME—J Basic Eng 82:35–45Google Scholar
  15. 15.
    Liu TL, Chen HT (2004) Real-time tracking using trust-region methods. IEEE Trans Pattern Anal Mach Intell 26:397–402CrossRefGoogle Scholar
  16. 16.
    Lucena M, Fuertes JM, Perez de la Blanca N (2005) Real-time tracking using multiple target models. Lect Notes Comput Sci 3522:20–27Google Scholar
  17. 17.
    Maggio E, Piccardo E et al (2007) Particle PHD filter for multi-target visual tracking. In: Proc. of IEEE international conference on acoustics, speech and signal processing (ICASSP 2007)Google Scholar
  18. 18.
    Moeslund T, Hilton A, Krüger V (2006) A survey of advances in vision-based human motion capture and analysis. Comput Vis Image Underst 104:90–126CrossRefGoogle Scholar
  19. 19.
    Peng NS, Yang J, Zhou DK (2006) Study on Bhattacharyya coefficients within mean-shift framework and its application. Soft Comput 10:1127–1134zbMATHCrossRefGoogle Scholar
  20. 20.
    Porikli F, Tuzel O (2003) Human body tracking by adaptive background models and mean-shift analysis. Mitsubishi Electric Research LaboratoriesGoogle Scholar
  21. 21.
    Ramanan D, Forsyth D, Zisserman A (2007) Tracking people by learning their appearance. IEEE Trans Pattern Anal Mach Intell 29:65–81CrossRefGoogle Scholar
  22. 22.
    Salinas R, García-Silvente M, Medina Carnicer R (2008) Adaptive multi-modal stereo people tracking without background modelling. J Vis Comun Image Represent 19:75–91CrossRefGoogle Scholar
  23. 23.
    Shen C, Brooks M, Hengel A (2007) Fast global kernel density mode seeking: applications to localization and tracking. IEEE Trans Image Process 16:1457–1469CrossRefMathSciNetGoogle Scholar
  24. 24.
    Sullivan J, Blake A et al (2001) Bayesian object localisation in images. Int J Comput Vis 44:111–135zbMATHCrossRefGoogle Scholar
  25. 25.
    Yang M, Wu Y, Hua G (2009) Context-aware visual tracking. IEEE Trans Pattern Anal Mach Intell 31:1195–1209CrossRefGoogle Scholar
  26. 26.
    Yilmaz A, Javed O, Shah M (2006) Object tracking: a survey. ACM Comput Surv 38:13CrossRefGoogle Scholar
  27. 27.
    Zhao Q, Tao H (2005) Object tracking using color correlogram. Proc IEEE Conf Comput Vis Pattern Recognit, pp 263–270Google Scholar
  28. 28.
    Zhou SK, Chellappa R, Moghaddam B (2004) Visual tracking and recognition using appearance-adaptive models in particle filters. IEEE Trans Image Process 13:1491–1506CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Manuel Lucena
    • 1
    Email author
  • José M. Fuertes
    • 1
  • Nicolás Pérez de la Blanca
    • 2
  • Manuel J. Marín-Jiménez
    • 3
  1. 1.Department of Computer ScienceUniversity of JaenJaenSpain
  2. 2.Department of Computer Science and A.I.University of GranadaGranadaSpain
  3. 3.Department of Computer Science and Numerical AnalysisUniversity of CórdobaCórdobaSpain

Personalised recommendations