Multimedia Tools and Applications

, Volume 46, Issue 2–3, pp 493–519 | Cite as

Content based radiology image retrieval using a fuzzy rule based scalable composite descriptor

  • Savvas A. Chatzichristofis
  • Yiannis S. Boutalis


The rapid advances made in the field of radiology, the increased frequency in which oncological diseases appear, as well as the demand for regular medical checks, led to the creation of a large database of radiology images in every hospital or medical center. There is now an imperative need to create an effective method for the indexing and retrieval of these images. This paper proposes a new method of content based radiology medical image retrieval. The description of images relies on a Fuzzy Rule Based Compact Composite Descriptor (CCD), which includes global image features capturing both brightness and texture characteristics in a 1D Histogram. Furthermore, the proposed descriptor includes the spatial distribution of the information it describes. The most important feature of the proposed descriptor is that its size adapts according to the storage capabilities of the application that uses it. Experiments carried out on a large group of images show that even at 48 bytes per image, the proposed descriptor demonstrates a high level of accuracy in its results. To evaluate the performance of the proposed feature, the mean average precision was used.


CBMIR Image retrieval Fuzzy methods Medical images 


  1. 1.
    Caicedo JC, Gonzalez FA, Triana E, Romero E (2007) Design of a medical image database with content-based retrieval capabilities. In: Lecture notes in computer science, vol 4872. Springer, New YorkGoogle Scholar
  2. 2.
    Chatzichristofis SA, Boutalis YS (2007) A hybrid scheme for fast and accurate image retrieval based on color descriptors. In: IASTED international conference on artificial intelligence and soft computing (ASC 2007), SpainGoogle Scholar
  3. 3.
    Chatzichristofis SA, Boutalis YS (2008) CEDD: color and edge directivity descriptor—a compact descriptor for image indexing and retrieval. In: 6th international conference in advanced research on computer vision systems, ICVS 2008, pp 312–322Google Scholar
  4. 4.
    Chatzichristofis SA, Boutalis YS (2008) FCTH: fuzzy color and texture histogram—a low level feature for accurate image retrieval. In: 9th international workshop on image analysis for multimedia interactive services, pp 191–196Google Scholar
  5. 5.
    Chatzichristofis SA, Boutalis YS (2009) Content based medical image indexing and retrieval using a fuzzy compact composite descriptor. In: The sixth IASTED international conference on signal processing, pattern recognition and applications, SPPRA 2009:1–6Google Scholar
  6. 6.
    Chatzichristofis SA, Boutalis YS, Lux M (2009) Img(Rummager): an interactive content based image retrieval system. In: 2nd international workshop on similarity search and applications (SISAP)Google Scholar
  7. 7.
    Chee SW, Dong KP, Soo-Jun P (2002) Efficient use of MPEG-7—edge histogram descriptor. ETRI J. 24:23–30CrossRefGoogle Scholar
  8. 8.
    Chi Z, Yan H, Pham T (1996) Fuzzy algorithms: with applications to image processing and pattern recognition. In: Advance in fuzzy systems, applications and theory, vol 10. World Scientific, SingaporeGoogle Scholar
  9. 9.
    Chu W, Hsu C, Cardenas A, Taira R (1998) Knowledge-based image retrieval with spatial and temporal constructs. IEEE Trans Knowl Data Eng 10(6):872–888CrossRefGoogle Scholar
  10. 10.
    Comaniciu D, Meer P, Foran D, Medl E (1998) Bimodal system for interactive indexing and retrieval of pathology images. In: Workshop on applications of computer vision. Princeton, NJ, pp 76–81Google Scholar
  11. 11.
    Datta R, Joshi D, Li J, Wang JZ (2008) Image retrieval: ideas, influences, and trends of the new age. ACM Comput Surv 40(2):1–60CrossRefGoogle Scholar
  12. 12.
    Deselaers T, Weyand T, Keysers D, Macherey W, Ney H (2006) FIRE in ImageCLEF 2005: combining content-based image retrieval with textual information retrieval. In: Lecture notes in computer science, vol 4022. Springer, New YorkGoogle Scholar
  13. 13.
    Deselaers T, Keysers D, Ney H (2007) Features for image retrieval: an experimental comparison. Inf Retr 11(2):77–107CrossRefGoogle Scholar
  14. 14.
    Deselaers T, Muller H, Deserno TM (2008) Automatic medical image annotation in ImageCLEF 2007. Pattern Recogn Lett 29(15):1988–1995CrossRefGoogle Scholar
  15. 15.
    Dhawan A (2003) Medical image analysis. Wiley-IEEE, New YorkGoogle Scholar
  16. 16.
    Glatard T, Montagnat J, Magnin I (2004) Texture based medical image indexing and retrieval: application to cardiac imaging. In: 6th ACM SIGMM international workshop on multimedia information retrieval, MIR ’04. ACM, New York, pp 135–142CrossRefGoogle Scholar
  17. 17.
    Guld MO, Keysers D, Deselaers T, Leisten M, Schubert H, Ney H, Lehmann TM (2004) Comparison of global features for categorization of medical images. In: Proceedings SPIE, vol 5371, pp 211–222Google Scholar
  18. 18.
    Guld MO, Thies C, Fischer B, Lehmann TM (2006) Content-based retrieval of medical images by combining global features. In: Lecture notes in computer science, accessing multilingual information repositoriesGoogle Scholar
  19. 19.
    Gustafson EE, Kessel WC (1979) Fuzzy clustering with a fuzzy covariance matrix. In: 18th IEEE conference on decision and control. IEEE CDC, San Diego, pp 761–766Google Scholar
  20. 20.
    Jeong S, Kim K, Chun B, Lee J, Bae YJ (1999) An effective method for combining multiple features of image retrieval. In: IEEE Region 10 conference: TENCON99, pp 982–985Google Scholar
  21. 21.
    Keys R (1981) Cubic convolution interpolation for digital image processing. IEEE Trans Signal Process Acoust Speech Signal Process 29:1153MATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Korn F, Sidiropoulos N, Faloustos C, Siegel E, Protopapas Z (1998) Fast and effective retrieval of medical tumor shapes. IEEE Trans Knowl Data Eng 10(6):889–904CrossRefGoogle Scholar
  23. 23.
    Lehmann TM, Guld MO, Keysers D, Deselaers T, Schubert H, Wein B, Spitzer K (2004) Similarity of medical images computed from global feature vectors for content-based retrieval. In: Negoita MGh et al (eds) KES 2004, LNAI, vol 3214. Springer, Berlin, pp 989–995Google Scholar
  24. 24.
    Lux M, Chatzichristofis SA (2008) LIRe: lucene image retrieval - an extensible java cbir library. In: ACM MM 2008. Vancouver Canada, pp 1085–1087Google Scholar
  25. 25.
    Luz A Jr, Abdala DD, Wangenheim AV, Comunello E (2006) Analyzing DICOM and non-DICOM features in content-based medical image retrieval: a multi-layer approach. In: Proceedings of the 19th IEEE symposium on computer-based medical systems. IEEE Computer Society, Washington, DC, pp 93–98CrossRefGoogle Scholar
  26. 26.
    Manjunath BS, Ohm J-R, Vasudevan VV, Yamada A (2001) Color and texture descriptors. IEEE Trans Circuits Syst Video Technol 11(6):703–715CrossRefGoogle Scholar
  27. 27.
    Mertzios B, Tsirikolias K (2004) Mitra S, Sicuranza G (eds) Logic filters: theory and applications, nonlinear image processing, Chapter 11. Academic, London (ISBN:0125004516)Google Scholar
  28. 28.
    Muller H, Muller W, Squire DM, Marchand-Maillet S, Pun T (2001) Performance evaluation in content-based image retrieval: overview and proposals. Pattern Recogn Lett 22(5):593–601 (Special Issue on Image and Video Indexing)CrossRefGoogle Scholar
  29. 29.
    Nikolaou N, Papamarkos N (2002) Color image retrieval using a fractal signature extraction technique. Eng Appl Artif Intell 15:81–96CrossRefGoogle Scholar
  30. 30.
    Pianykh OS (2008) Digital imaging and communications in medicine (DICOM): a practical introduction and survival guide. Springer, New YorkGoogle Scholar
  31. 31.
    Poullot S, Buisson O, Crucianu M (2007) Z-grid-based probabilistic retrieval for scaling up content-based copy detection. In: CIVR ’07: proceedings of the 6th ACM international conference on image and video retrieval, pp 348–355Google Scholar
  32. 32.
    Puzicha J, Rubner Y, Tomasi C, Buhmann J (1999) Empirical evaluation of dissimilarity measures for color and texture. In: Proceedings of the international conference on computer vision, vol 2, pp 1165–1173Google Scholar
  33. 33.
    Prusinkiewicz P, Hanan J (1989) Lindenmayer systems, fractals, and plants. Springer, BerlinMATHGoogle Scholar
  34. 34.
    Sagan H (1994) Space filling curves. Springer, New YorkMATHGoogle Scholar
  35. 35.
    Serratosa F, Sanfeliu A (2006) Signatures versus histograms: definitions, distances and algorithms. Pattern Recogn 39:921–934MATHCrossRefGoogle Scholar
  36. 36.
    Tagare HD, Jaffe CC, Duncan J (1997) Medical image databases a content-based retrieval approach. J Am Med Inform Assoc 4(3):184–198Google Scholar
  37. 37.
    Tamura H, Mori S, Yamawaki T (1978) Textural features corresponding to visual perception. IEEE Trans Syst Man Cybern 8(6):460–472CrossRefGoogle Scholar
  38. 38.
    Vonikakis V, Andreadis I, Gasteratos A (2008) Fast centre-surround contrast modification. IET Image Processing 2(1):19–34CrossRefGoogle Scholar
  39. 39.
    Willy PM, Karl-Heinz K (2004) Content-based medical image retrieval (CBMIR): an intelligent retrieval system for handling multiple organs of interest. In: 17th IEEE symposium on computer-based medical systems, p 113Google Scholar
  40. 40.
    Yaoa J, Zhanga Z(Mark), Antanib S, Longb R, Thomab G (2008) Automatic medical image annotation and retrieval. Neurocomputing 71(10–12):2012–2022Google Scholar
  41. 41.
    Zagoris K, Chatzichristofis SA, Nikolas P, Boutalis YS (2009) Img(Anaktisi): a web content based image retrieval system. In: 2nd international workshop on similarity search and applications (SISAP)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Savvas A. Chatzichristofis
    • 1
  • Yiannis S. Boutalis
    • 1
    • 2
  1. 1.Department of Electrical & Computer EngineeringDemocritus University of ThraceXanthiGreece
  2. 2.Department of Electrical, Electronic and Communication Engineering, Chair of Automatic ControlFriedrich-Alexander University of Erlangen-NurembergErlangenGermany

Personalised recommendations