Advertisement

Multimedia Tools and Applications

, Volume 48, Issue 3, pp 411–436 | Cite as

Successive refinement of side information for multi-view distributed video coding

  • Lucian Ciobanu
  • Luís Côrte-Real
Article

Abstract

Inter-camera registration in multi-view systems with overlapped views has a particularly long and sophisticated research history within the computer vision community. Moreover, when applied to Distributed Video Coding, in systems with at least one moving camera it represents a real challenge due to the necessary data at decoder for generating the side information without any a priori knowledge of each instant camera position. This paper proposes a solution to this problem based on successive multi-view registration and motion compensated extrapolation for on-the-fly re-correlation of two views at decoder. This novel technique for side information generation is codec-independent, robust and flexible with regard to any free motion of the cameras. Furthermore, it doesn’t require any additional information from encoders nor communication between cameras or offline training stage. We also propose a metric for an objective assessment of the multi-view correlation performance.

Keywords

Distributed video coding (DVC) Wyner-Ziv (WZ) Side information generation Multi-view registration (MVR) Overlapped views Motion compensated extrapolation (MCE) Scale-Invariant feature transform (SIFT) 

Notes

Acknowledgement

The first author acknowledges the Fundação para a Ciência e a Tecnologia, Portugal, for the financial support.

References

  1. 1.
    Aaron A, Girod B (2004) Wyner-ziv video coding with low encoder complexity. In: Proceedings international picture coding symposium, PCS’04, San FranciscoGoogle Scholar
  2. 2.
    Aaron A, Rane S, Girod B (2004) Wyner-ziv video coding with hash-based motion-compensation at the receiver. In: Proceedings IEEE intl. conference on image processing, SingaporeGoogle Scholar
  3. 3.
    Althof R, Wind M, Dobbins IJT (1997) A rapid and automatic image registration algorithm with subpixel accuracy. IEEE Trans Med Imag 16(3):308–316CrossRefGoogle Scholar
  4. 4.
    Artigas X, Angeli E, Torres L (2006) Side information generation for multiview distributed video coding using a fusion approach. In: 7th nordic signal processing symposium, NORSIG’06, Reykjavik, Iceland, 7–9 June 2006Google Scholar
  5. 5.
    Ascenso J, Pereira F (2007) Adaptive hash-based side information exploitation for efficient Wyner-Ziv video coding. In: International conference on image processing (ICIP)—2007, San AntonioGoogle Scholar
  6. 6.
    Benedek C, Havasi L, Sziranyi T, Szlavik Z (2005) Motion-based flexible camera registration. Advanced Video and Signal Based Surveillance, 2005. AVSS 2005. IEEE Conference on, pp 439–444Google Scholar
  7. 7.
    Bergevin R, Soucy M, Gagnon H, Laurendeau D (1996) Towards a general multi-view registration technique. IEEE Trans Pattern Anal Mach Intell 18(50):540–547CrossRefGoogle Scholar
  8. 8.
    Brivio PA, Della Ventura A, Rampini A, Schettini R (1992) Automatic selection of control-points from shadows structures. Int J Remote Sens 13(10):1853–1860CrossRefGoogle Scholar
  9. 9.
    Brown LG (1992) A survey of image registration techniques. ACM Comput Surv 24(4):325–376CrossRefGoogle Scholar
  10. 10.
    Brown M, Lowe DG (2003) Recognising panoramas. In: Proceedings IEEE international conference on computer vision, Nice, 13–16 October 2003Google Scholar
  11. 11.
    Brown M, Lowe DG (2007) Automatic panoramic image stitching using invariant features. Int J Comput Vis 74:59–73CrossRefGoogle Scholar
  12. 12.
    Cheng S, Xiong Z (2005) Successive refinement for the Wyner-Ziv problem and Layered Code Design. IEEE Trans Signal Process 53:8CrossRefMathSciNetGoogle Scholar
  13. 13.
    Dufaux F, Ouaret M, Ebrahimi T (2007) Recent advances in multiview distributed video coding. In: SPIE defense and security symposium (DSS 2007), Orlando, 9–13 April 2007Google Scholar
  14. 14.
    Fonseca LMG, Costa MHM (1997) Automatic registration of satellite images. In: Brazilian symposium on computer graphics and image processing, 10, Campos de Jordão, pp 219–226Google Scholar
  15. 15.
    Forssén P-E, Lowe DG (2007) Shape descriptors for maximally stable extremal regions. In: International conference on computer vision (ICCV), Rio de JaneiroGoogle Scholar
  16. 16.
    Goncalves H, Goncalves JA, Corte-Real L (2008) Automatic image registration based on correlation and hough transform. In: Bruzzone L, Notarnicola C, Posa F (eds) SPIE, vol 7109, no 1, p 71090J. http://link.aip.org/link/?PSI/7109/71090J/1
  17. 17.
    Gordon I, Lowe DG (2006) What and where: 3D object recognition with accurate pose. Toward Category-Level Object Recognition, pp 67–82Google Scholar
  18. 18.
    Growe S, Tönjes R (1997) A knowledge based approach to automatic image registration. In: International conference on image processing 97, pp 26–29Google Scholar
  19. 19.
    Guo X, Lu Y, Wu F, Gao W, Li S (2006) Distributed multi-view video coding. In: Proceedings of SPIE-IS&T electronic imaging, SPIE, vol 6077, San Jose, 15–19 January 2006Google Scholar
  20. 20.
    Izquierdo E (2003) Efficient and accurate image based camera registration. IEEE Trans Multimedia 5(3):293–302CrossRefGoogle Scholar
  21. 21.
    Le Moigne J, Xia W, Chalermwat P, El-Ghazawi T, Mareboyana M, Netanyahu N, Tilton J, Campbell W, Cromp R (1998) First evaluation of automatic image registration methods. In: Geoscience and remote sensing symposium proceedings, 1998. IGARSS ’98, vol 1. IEEE International, Piscataway, pp 315–317Google Scholar
  22. 22.
    Likar B, Pernus F (1999) Automatic extraction of corresponding points for the registration of medical images. Med Phys 26:1678–1686CrossRefGoogle Scholar
  23. 23.
    Lowe D. Scale-Invariant Feature Transform (SIFT): matching with local invariant features. http://www.cs.ubc.ca/spider/lowe/research.html, http://www.cs.ubc.ca/~lowe/keypoints/
  24. 24.
    Lowe DG (2004) Distinctive image features from scale-invariant keypoints. Int J Comput Vis 60:91–110CrossRefGoogle Scholar
  25. 25.
    Ouaret M, Dufaux F, Ebrahimi T (2006) Fusion-based multiview distributed video coding. In: ACM international workshop on video surveillance and sensor networks, Santa Barbara, 27 October 2006Google Scholar
  26. 26.
    Ouaret M, Dufaux F, Ebrahimi T (2007) Multiview distributed video coding with encoder driven fusion. In: European conference on signal processing (EUSIPCO), Poznan, 3–7 September 2007Google Scholar
  27. 27.
    Puri R, Ramchandran K (2003) PRISM: a “reversed” multimedia coding paradigm. In: Proceedings international conference on image processing (ICIP), BarcelonaGoogle Scholar
  28. 28.
    Slepian D, Wolf JK (1973) Noiseless coding of correlated information sources. IEEE Trans Inf Theory 19:471–480zbMATHCrossRefMathSciNetGoogle Scholar
  29. 29.
    Szlavik Z, Sziranyi T, Havasi L (2007) Video camera registration using accumulated co-motion maps. 61(5):298–306Google Scholar
  30. 30.
    Tipdecho T (2002) Automatic image registration between image and object spaces. In: Proceedings of the open source GIS—GRASS users conference 2002, Trento, 11–13 September 2002Google Scholar
  31. 31.
    Wyner D, Ziv J (1976) The rate-distortion function for source coding with side information at the decoder. IEEE Trans Inf Theory 22:1–10zbMATHCrossRefMathSciNetGoogle Scholar
  32. 32.
    Yeo C, Ramchandran K (2007) Robust distributed multi-view video compression for wireless camera networks. In: VCIP 2007, San Jose, 28 January–1 February 2007Google Scholar
  33. 33.
    Zitova B, Flusser J (2003) Image registration methods: a survey. Image Vis Comput 21(11):977–1000. doi: 10.1016/S0262-8856(03)00137-9 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Faculdade de Engenharia da Universidade do PortoPortoPortugal
  2. 2.INESCPortoPortugal

Personalised recommendations