Advertisement

Multimedia Tools and Applications

, Volume 45, Issue 1–3, pp 215–245 | Cite as

The H-N2N framework: towards providing interperception in massive applications

  • Aquiles M. F. BurlamaquiEmail author
  • Samuel O. Azevedo
  • Rummenigge Rudson Dantas
  • Claudio A. Schneider
  • Josivan S. Xavier
  • Julio C. P. Melo
  • Luiz M. G. Gonçalves
  • Guido L. S. Filho
  • Jauvane C. de Oliveira
Article
  • 73 Downloads

Abstract

We propose a framework with a flexible architecture that have been designed and implemented for collaborative interaction of users, to be applied in massive applications through the Web. We introduce the concept of interperception and use technologies as massive virtual environments and teleoperation for the creation of environments (mixing virtual and real ones) in order to promote accessibility and transparency in the interaction between people, and between people and animate devices (such as robots) through the Web. Experiments with massive games, with interactive applications in digital television, with users and robots interacting in virtual and real versions of museums and cultural centers are presented to validate our proposal.

Keywords

Massive interaction Multi-user gaming Accessibility Interperception 

Notes

Acknowledgements

We acknowledge financial support from CNPq and FAPERJ, Brazilian Research Sponsoring Agencies, and from RNP, the National Research Network, sponsor of the GT-MV Project.

References

  1. 1.
    Azevedo S, Burlamaqui AMF, Dantas RR, Schneider CA, Gomes RB, Melo JC, Xavier J, Gonçalves LMG (2006) Interperception on shared virtual environments. In: IEEE international conference on virtual environments, human-computer interfaces, and measurement systems, VECIMS, 2006, La CoruñaGoogle Scholar
  2. 2.
    Burdea G (1996) Force and touch feedback for virtual reality. Wiley Professional Computing, New YorkGoogle Scholar
  3. 3.
    Burlamaqui A, Tavares TA, Filho GLS, (2002) Vixnu - um servidor multi-usuário com suporte a comunicação em ambientes virtuais colaborativos. In: SBMIDIA, FortalezaGoogle Scholar
  4. 4.
    Burlamaqui A, Azevedo S, Melo J, Dantas R, Schneider C, Xavier J, Gonçalves L (2008) Indirect group interaction in interpeceptive virtual environments. In: Proceedings of IEEE international conference on virtual environments, human-computer interfaces, and measurement systems (VECIMS) 2008, IstanbulGoogle Scholar
  5. 5.
    Capin TK, Pandzic IS, Thalmann NM, Thalmann D (1998) Realistic avatars and autonomous virtual humans. In: Earnshaw R, Vince J (eds) Virtual worlds in the internet. IEEE Computer Society, Silver Spring, pp 157–174Google Scholar
  6. 6.
    Capin T, Thalmann D, Pandzic I (1999) Taxonomy of networked virtual environments. In: Avatars in networked virtual environments. Wiley, New York, pp 15–58CrossRefGoogle Scholar
  7. 7.
    Carlsson C, Hagsand O (1993) DIVE - a platform for multi-user virtual environments. Comput Graph 17(6):663–669CrossRefGoogle Scholar
  8. 8.
    Dongseok R, Sungchul K, Munsang K, Song J-B (2004) Multi-modal user interface for teleoperation of robhaz-dt2 field robot system. In: Proceedings of IEEE/RSJ international conference on intelligent robots and systems (IROS) 2004, vol 1, September/October 2004, pp 168–173Google Scholar
  9. 9.
    Dragone M, Duffy BR, O’Hare GMP (2005) Social interaction between robots, avatars & humans. In: Proceedings of IEEE international workshop on robot and human interactive communication, 2005, Roman, pp 24–29Google Scholar
  10. 10.
    Gamma E, Helm R, Johnson R, Vlissides J (1994) Design patterns: elements of reusable object-oriented software. Professional computing series. Addison-Wesley, New YorkGoogle Scholar
  11. 11.
    Greenhalgh C, Benford S (1995) MASSIVE: a virtual reality system for tele-conferencing. ACM Trans Comput Hum Interfaces (TOCHI) 2(3):239261Google Scholar
  12. 12.
    Iba S, Paredis CJJ, Khosla PK (2002) Interactive multi-modal robot programming. In: Robotics and automation, 2002. Proceedings. ICRA 02. IEEE international conference, vol 1. IEEE, Piscataway, pp 161–168Google Scholar
  13. 13.
    Kunert T, Kromker H (2006) Proven interaction design solutions for accessing and viewing interactive TV content Items. In: Proceedings of 4th European conference on interactive television, 2006, Athens, pp 242–250Google Scholar
  14. 14.
    Lee KW, Kim H-R, Yoon WC, Yoon Y-S, Kwon D-S (2005) Designing a human-robot interaction framework for home service robot. In: Proceedings of IEEE international workshop on robot and human interactive communication, 2005, Roman, pp 286–293Google Scholar
  15. 15.
    Macedonia MR, Zyda MJ (1997) A taxonomy for networked virtual environments. IEEE Multimed 4(1):48–56CrossRefGoogle Scholar
  16. 16.
    Macednia M, Zyda M, Pratt D, Barham P, Zeswitz S (1994) NPSNET: a network software architecture for large scale virtual environments. Presence Teleoperators Virtual Environ 3(4):265287Google Scholar
  17. 17.
    Milgram P et al (1994) Augmented reality: a class of displays on the reality-virtuality continuum. In Proc. of SPIE, vol 2351: telemanipulator and telepresence technologiesGoogle Scholar
  18. 18.
    Min-Jang S et al (2008) An efficient load balancing mechanism in distributed virtual environments. ETRI J 30:618CrossRefGoogle Scholar
  19. 19.
    Morillo P, Fernandez M, Pelechano N (2003) A grid representation for distributed virtual environments. In: Proceedings of 1st European across grids conference, vol 2970. Springer LNCS, Santiago de Compostela, pp 182–189Google Scholar
  20. 20.
    Oliveira JC, Georganas ND (2003) VELVET: an adaptive hybrid architecture for very large virtual environments. Presence Teleoperators Virtual Environ 12(6):555–580CrossRefGoogle Scholar
  21. 21.
    Oliveira MAMS, Todesco G, Araujo RB (1999) The limitations of interactive multiuser 3D environments in the WWW, dexa. In: 10th international workshop on database & expert systems applications, p 279Google Scholar
  22. 22.
    Rfc rtp (2006) RTP: a transport protocol for real-time applications. http://www.ietf.org/rfc/rfc3550.txt. Accessed January 2006
  23. 23.
    Saito H, Ishimura K, Hattori M, Takamori T (2002) Multi-modal human robot interaction for map generation. In: SICE 2002. Proceedings of the 41st SICE annual conference, vol 5, pp 2721–2724Google Scholar
  24. 24.
    Schrempf OC, Hanebeck UD, Schmid AJ, Worn H (2005) A novel approach to proactive human-robot cooperation. In: Robot and human interactive communication, 2005. ROMAN 2005. IEEE international workshop. IEEE, Piscataway, pp 555–560CrossRefGoogle Scholar
  25. 25.
    Shaw C, Green M (1993) The MR toolkit peers package and experiment. In: Proceedings of IEEE virtual reality annual international symposium, pp 463–469Google Scholar
  26. 26.
    Singh G, Serra L, Png W, Wong A, Ng H (1995) BrickNet: Sharing object behaviors on the net. In: Proceedings of IEEE virtual reality annual international sumposium, 19–25 March 1995Google Scholar
  27. 27.
    Souza F (2004) Frameworks and middlewares for ubiquitous computing (in Portuguese). Campus, So PauloGoogle Scholar
  28. 28.
    Tavares TA, Araujo AS, Souza Filho, GL (2001) ICSpace the artists place on the net. In: AMT2001, 2001, Hong Kong. Springer-Verlag lectures notes in computer science, vol 2252. Springer, Hong KongGoogle Scholar
  29. 29.
    Tavares T, Tavares D, Gonçalves L, Burlamaqui A, Lemos G (2003) Hyperpresence an application environment for control of multi-user agents in mixed reality spaces. In: 36th annual simulation symposium, 2003, Orlando. Proceedings 36th annual simulation symposium (ANSS-36 2003), pp 351–358Google Scholar
  30. 30.
    Tavares T et al (2004) Sharing virtual acoustic spaces over interactive TV programs—presenting “virtual cheering” application. In: 2004 IEEE international conference on multimedia and expo-ICMEGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Aquiles M. F. Burlamaqui
    • 1
    Email author
  • Samuel O. Azevedo
    • 1
  • Rummenigge Rudson Dantas
    • 1
  • Claudio A. Schneider
    • 1
  • Josivan S. Xavier
    • 1
  • Julio C. P. Melo
    • 1
  • Luiz M. G. Gonçalves
    • 1
  • Guido L. S. Filho
    • 2
  • Jauvane C. de Oliveira
    • 3
  1. 1.Universidade Federal do Rio Grande do Norte ECT-UFRNNatalBrazil
  2. 2.Universidade Federal da Paraiba LAVID-DI-UFPBJoao PessoaBrazil
  3. 3.National Laboratory for Scientific Computing (LNCC) CCC/LNCCPetropolisBrazil

Personalised recommendations