Advertisement

Multimedia Tools and Applications

, Volume 41, Issue 1, pp 111–123 | Cite as

The training of Karhunen–Loève transform matrix and its application for H.264 intra coding

  • Yi Gao
  • Jiazhong Chen
  • Shengsheng Yu
  • Jingli Zhou
  • Lai-Man Po
Article

Abstract

In H.264/AVC, 4 × 4 discrete cosine transform (DCT) is performed on the residual signals after intra prediction for decorrelation. Actually, residual blocks with different prediction modes exhibit different frequency characteristics. Therefore, the fixed transform matrix cannot match the energetic distribution of residual signals very well, which degrades the decorrelation performance. Fortunately, the energetic distributions of residual blocks with the same mode are relatively coincident, which makes it possible to train a universally good Karhunen–Loève transform (KLT) matrix for each mode. In this paper, an optimal frequency matching (OFM) algorithm is proposed to train KLT matrices for residual blocks and nine KLT matrices corresponding to nine prediction modes of 4 × 4 intra blocks are trained. Experimental results show that KLT with trained matrices yields a persistent gain over H.264 using 4 × 4 DCT with an average peak signal-to-noise ratio (PSNR) enhancement of 0.22dB and a maximum enhancement of 0.33dB.

Keywords

Karhunen–Loève transform Discrete cosine transform Intra coding H.264/AVC 

References

  1. 1.
    Adaptive quantization encoding technique using an equal expected-value rule, JVT-N011.doc (2005) http://ftp3.itu.ch/av-arch/jvt-site/2005_01_HongKong, Hong Kong.
  2. 2.
    Chen JZ, Xu J (2006) The application of symmetric orthogonal multiwavelets and prefilter technique for image compression. Multimedia Tools Appl 29(2):175–189. doi: 10.1007/s11042-006-0006-6 CrossRefGoogle Scholar
  3. 3.
    Effros M, Chou PA, Gray RM (1999) Weighted universal image compression. IEEE Trans Image Process 8(10):1317–1329. doi: 10.1109/83.791958 zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Effros M, Feng H, Zeger K (2004) Suboptimality of the Karhunen–Loève transform for transform coding. IEEE Trans Inf Theory 50(8):1605–1619. doi: 10.1109/TIT.2004.831787 CrossRefMathSciNetGoogle Scholar
  5. 5.
    Feng HY, Effors M (2004) On the rate-distortion performance and computational efficiency of the Karhunen–Loève transform for lossy data compression. IEEE Trans Image Process 11(2):113–122. doi: 10.1109/83.982819 CrossRefGoogle Scholar
  6. 6.
    Gaydecki P (2001) A versatile real-time deconvolution DSP system implemented using a time domain inverse filter. Meas Sci Technol 12(1):82–88. doi: 10.1088/0957-0233/12/1/311 CrossRefGoogle Scholar
  7. 7.
    Halbach T (2002) Performance comparison: H.26L intra coding versus JPEG2000. JVT-D039Google Scholar
  8. 8.
    He ZH (2007) Peak transform for efficient image representation and compression. IEEE Trans Image Process 16(7):1741–1754. doi: 10.1109/TIP.2007.896599 CrossRefGoogle Scholar
  9. 9.
    Jia J, Jung EK, Kim HK (2007) Adaptive transform coefficient scan for H.264 intra coding. IEICE Trans Inf Syst E 90-D(10):1709–1711. doi: 10.1093/ietisy/e90-d.10.1709 CrossRefGoogle Scholar
  10. 10.
    Lee YL, Han KH, Sim DG, Seo J (2006) Adaptive scanning for H.264 intra coding. ETRI J 28(5):668–671Google Scholar
  11. 11.
    Marpe D, Wiegand T, Sullivan GJ (2006) The H.264/MPEG4 advanced video coding standard and its applications. IEEE Commun Mag 44:134–143. doi: 10.1109/MCOM.2006.1678121 CrossRefGoogle Scholar
  12. 12.
    Martinelli G, Ricotti LP, Marcone G (1993) Neural clustering for optimal KLT image compression. IEEE Trans Signal Process 41(4):1737–1739. doi: 10.1109/78.212760 CrossRefGoogle Scholar
  13. 13.
    Páta P (2006) Suboptimal Karhunen–Loève transform for compression of astronomical images. In: Proc. IEEE International Symposium on Signal Processing and Information Technology, Hawaii, USA, pp 332–337Google Scholar
  14. 14.
    Penna B, Tillo T, Magli E, Olmo G (2007) Hyperspectral image compression employing a model of anomalous pixels. IEEE Trans Geosci Remote Sens Lett 4(4):664–668. doi: 10.1109/LGRS.2007.903976 CrossRefGoogle Scholar
  15. 15.
    Saghizadeh P, Willson AN (1998) A new approach to the design of critically sampled M-Channel uniform band perfect-reconstruction linear-phase FIR filter banks. IEEE Trans Signal Process 46(6):1544–1577. doi: 10.1109/78.678467 CrossRefGoogle Scholar
  16. 16.
    Sicora T (1997) The MPEG-4 video standard verification model. IEEE Trans Circuits Syst Video Technol 7(1):19–31. doi: 10.1109/76.554415 CrossRefGoogle Scholar
  17. 17.
    Suh KB, Park SM, Cho HJ (2005) An efficient hardware architecture of intra prediction and TQ/IQIT module for H.264 encoder. ETRI J 27(5):511–524Google Scholar
  18. 18.
    Taubman DS, Marcellin MW (2002) JPEG2000: image compression fundamentals, standards and practice. Kluwer, BostonGoogle Scholar
  19. 19.
    Tsai AC, Paul A, Wang JC, Wang JF (2008) Intensity gradient technique for efficient intra-prediction in H.264/AVC. IEEE Trans Circuits Syst Video Technol 18(5):694–698. doi: 10.1109/TCSVT.2008.919113 CrossRefGoogle Scholar
  20. 20.
    Wiegand T, Sullivan GJ, Bjontegaard G, Luthra A (2003) Overview of the H.264/AVC video coding standard. IEEE Trans Circuits Syst Video Technol 13(7):560–576. doi: 10.1109/TCSVT.2003.815165 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Yi Gao
    • 1
  • Jiazhong Chen
    • 1
  • Shengsheng Yu
    • 1
  • Jingli Zhou
    • 1
  • Lai-Man Po
    • 2
  1. 1.Department of Computer ScienceHuazhong University of Science & TechnologyWuhanChina
  2. 2.Department of Electronic EngineeringCity University of Hong KongKowloonChina

Personalised recommendations