Designing and scaling distributed VoD servers

  • Péter Kárpáti
  • Tibor SzkaliczkiEmail author
  • László Böszörményi


Planning Video-on-Demand (VoD) services based on the server architecture and the available equipment is always a challenging task. We created a formal model to support the design of distributed video servers that adapt dynamically and automatically to the changing client demands, network and host parameters. The model makes giving estimations about the available throughput possible, and defines evaluation criteria for VoD services relating to utilization and load balance, video usage, client satisfaction and costs. The dynamism of the frame model originates from the possible state transitions which have to be defined in a core model. The core model is responsible for configuration recommendation which determines how clients are served depending on the properties of their requests, system configuration and system load. Furthermore, it decides on the optimal placement of the server components in the network. The usability of the model is illustrated on examples.


Designing Scaling Distributed video server Self-organization Configuration recommendation 



This work was carried out partially during the tenure of an ERCIM “Alain Bensoussan” Fellowship Programme. Partial support of the Hungarian National Science Fund (Grant No. OTKA 67651) and the Mobile Innovation Center, Hungary is gratefully acknowledged.


  1. 1.
    Apple Computer, Inc. QuickTime Streaming Server (2002) Darwin Streaming server: mAdministrator’s Guide.
  2. 2.
    Boll S (2003) MM4U—a framework for creating personalized multimedia content. In: Proceedings of the 2003 International Workshop on Cryptology and Network Security, pp 12–26Google Scholar
  3. 3.
    Böszörményi L, Hellwagner H, Kosch H, Libsie M, Podlipnig S (2003) Metadata driven adaptation in the ADMITS project. EURASIP Signal Process Image Commun J 18(8):749–766, Sept. 2003 (Special Issue on Multimedia Adaptation)CrossRefGoogle Scholar
  4. 4.
    Böszörmenyi L, Hellwagner H, Schojer P (2007) Metadata-driven optimal transcoding in a multimedia proxy. Multimedia Syst 12:51–68, March 2007CrossRefGoogle Scholar
  5. 5.
    Calvert K, Eagan J, Merugu S, Namjoshi A, Stasko J, Zegura E (2003) Extending and enhancing GT-ITM. In: Proceedings of the ACM SIGCOMM 2003 WorkshopsGoogle Scholar
  6. 6.
    Cherkasova L (2005) Optimizing the reliable distribution of large files within CDNs. ISCC 2005. In: Proceedings on the 10th IEEE Symposium on Computers and Communications, vol, issue, 27–30 June 2005, pp 692–697Google Scholar
  7. 7.
    Cherkasova L, Staley L (2002) Measuring the capacity of a streaming media server in a utility data center environment. In: Proceedings of ACM Multimedia 2002, Juan Les Pines, FranceGoogle Scholar
  8. 8.
    Cherkasova L, Tang W, Singhal S (2004) An SLA-oriented capacity planning tool for streaming media services. In: Proceedings of the International Conference on Dependable Systems and NetworksGoogle Scholar
  9. 9.
    Cormen TH, Leiserson CE, Rivest RL, Stein C (2001) Introduction to algorithms, 2nd edn. MIT Press and McGraw-Hill, Cambridge, MA, pp 651–664 ISBN 0-262-03293-7. Section 26.2: The Ford–Fulkerson methodzbMATHGoogle Scholar
  10. 10.
    Cornuejols G, Fisher ML, Nemhauser GL (1977) Location of bank accounts to optimize float: an analytic study of exact and approximate algorithms. Manage Sci 23:789–810zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    David WB, Rowe LA (1996) Hierarchical storage management in a distributed VOD system. IEEE Multimed 3(3):37–47, doi: 10.1109/93.556538 CrossRefGoogle Scholar
  12. 12.
    Goldschmidt B, Szkaliczki T, Böszörményi L (2004) Placement of nodes in an adaptive distributed multimedia server. In: Proceedings of the 10th International Euro-Par Conference, pp 776–783, Extended version: Technical Reports of the Institute of Information Technology, University Klagenfurt, TR/ITEC/04/2.06Google Scholar
  13. 13.
    Guo M, Ammar MH, Zegura EW (2002) Selecting among replicated batching video-on-demand servers. In: Proceedings of Network and Operating System Support for Digital Audio and Video, 12th International Workshop, NOSSDAV 2002, pp 155–163Google Scholar
  14. 14.
    Helix Community The Helix Platform, 2002.
  15. 15.
  16. 16.
  17. 17.
    Ji ZGP, Shenoy P (2002) A demand adaptive and locality aware streaming media server cluster architecture. Proceedings of ACM NOSSDAV 2002, May 2002, Miami, Florida, USAGoogle Scholar
  18. 18.
    Karpati P (2008) Designing and scaling proactive, self-organizing video servers. A formal and a simulation model. Vdm Verlag Dr. Müller, April 2008Google Scholar
  19. 19.
    Kárpáti P, Kocsor A, Böszörményi L (2005) Client behaviour prediction in a proactive video server. In: Proceedings of IASTED International Conference on Internet and Multimedia Systems and Applications, ACTA Press 462, pp 492–497Google Scholar
  20. 20.
    Kárpáti P, Szkaliczki T, Böszörményi L (2005). Mathematical model for distributed video-on-demand servers. Technical Reports of the Institute of Information Technology, University Klagenfurt, TR/ITEC/05/2.13Google Scholar
  21. 21.
    Kayssi A, El-Haj-Mahmoud A (2004) EmuNET: a real-time network emulator. In: Proceedings of the 19th ACM Symposium on Applied Computing (SAC'04), pp 357–362Google Scholar
  22. 22.
    Khan S, Li KF, Manning EG, Akbar M (2002) Solving the knapsack problem for adaptive multimedia. Studia Inform 2(1):154–174, (special issue on Cutting, Packing and Knapsacking Problems)Google Scholar
  23. 23.
    Kropfberger M, Schojer P et al (2004) ViTooKi—the video toolkit.
  24. 24.
    Li B, Golin MJ, Italiano GF, Deng X, Sohraby K (1999) On the optimal placement of web proxies in the internet. IEEE INFOCOM 1999—The Conference on Computer Communications, No. 1, March 1999, pp 1282–1290Google Scholar
  25. 25.
  26. 26.
    Penas JJS, Ramiro CA (2003) Extending the VoDKA architecture to improve resource modeling, principles, logics, and implementations of high-level programming languages. 2nd ACM SIGPLAN Erlang Workshop. Uppsala, Sweden. August 29Google Scholar
  27. 27.
    Public homepage for “Infrastructure for Adaptive Server Applications” project:
  28. 28.
    Qiu L, Padmanabhan VN, Voelker GM (2001) On the placement of web server replicas. n Proceedings of IEEE INFOCOM’01, Apr. 2001, pp 1587–1596Google Scholar
  29. 29.
    RealNetworks, Inc. Helix Universal Server Administration Guide, 2003. URL:
  30. 30.
    Sitaram D, Dan A (2000) Multimedia servers. Kaufmann, Los Altos, CA, pp 89–93Google Scholar
  31. 31.
    Steen M, Homburg P, Tannenbaum AS (1999) Globe: a wide-area distributed system. IEEE Concurr 7:70–78CrossRefGoogle Scholar
  32. 32.
    Steinmetz R (2000) Multimedia-technologie. Springer, Heidelberg, pp 238–239zbMATHGoogle Scholar
  33. 33.
    Szkaliczki T, Böszörményi L (2004) Incremental placement of nodes in a large-scale adaptive distributed multimedia server. In: Zoltan J, Kacsuk P, Kranzlmüller D (eds) Proceedings of International Conference on Distributed and Parallel Systems (DAPSYS 04), Kluwer international series in engineering and computer science, vol 777. Springer, New York, pp 165–172Google Scholar
  34. 34.
    Tang W, Fu Y, Cherkasova L, Vahdat A (2003) MediSyn: a synthetic streaming media service workload generator. Proceedings of the 13th International Workshop Network Operating System Support for Digital Audio Video (ACM NOSSDAV), Monterey, CA, June 2003, pp 12–21Google Scholar
  35. 35.
    Tusch R (2004) Design and implementation of an adaptive distributed multimedia streaming server. Ph.D. thesis, University KlagenfurtGoogle Scholar
  36. 36.
    Tusch R, Böszörmenyi L, Goldschmidt B, Hellwagner H, Schojer P (2004) Offensive and defensive adaptation in distributed multimedia systems. Comput Sci Inf Syst 1(1):49–77, ComSISGoogle Scholar
  37. 37.
    Yang M, Fei Z (2003) A model for replica placement in content distribution networks for multimedia applications. Communications 1:557–561 ICC apos;03. IEEE International Conference, 11–15 May 2003Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Péter Kárpáti
    • 1
  • Tibor Szkaliczki
    • 2
    Email author
  • László Böszörményi
    • 3
  1. 1.Norwegian University of Science and Technology (NTNU)TrondheimNorway
  2. 2.Computer and Automation Research InstituteHungarian Academy of SciencesBudapestHungary
  3. 3.Klagenfurt UniversityKlagenfurtAustria

Personalised recommendations