Compression and distribution of panoramic videos utilising MPEG-7-based image registration

  • Andrzej Glowacz
  • Michał Grega
  • Piotr Romaniak
  • Mikołaj Leszczuk
  • Zdzisław Papir
  • Ignacy Pardyka
Article

Abstract

This paper describes an innovative compression method of panoramic images based on MPEG-7 descriptors. The proposed solution employs a detection of a series of individual video frame overlaps in order to produce concatenated panoramic images. The presented method is easy to implement even in simple devices such as low power consuming chipsets installed in remote cameras having limited power supplies. Under subjective tests it has been proved that the concatenation method allows for achieving lower transmission rates while sustaining picture quality.

Keywords

Wireless content distribution Panoramic image MPEG-7 Edge histogram descriptor Mean opinion score Quality evaluation 

References

  1. 1.
    Glowacz A, Grega M, Leszczuk M, Romaniak P (2006) Detecting panoramic image overlaps with MPEG-7 descriptors. In: Proceedings of the international conference on signals and electronic systems (ICSES ’06). Łódź, PolandGoogle Scholar
  2. 2.
    Halonen T, Romero J, Melero J (2003) GSM, GPRS and EDGE performance—evolution towards 3G/UMTS. Wiley, New YorkGoogle Scholar
  3. 3.
    Holma H, Toskala A (2004) WCDMA for UMTS. Wiley, New YorkGoogle Scholar
  4. 4.
    Hsieh JW (2004) Fast stitching algorithm for moving object detection and mosaic construction. Image Vis Comput 22:291–306CrossRefGoogle Scholar
  5. 5.
    Hsu CT, Tsan YC (2004) Mosaics of video sequences with moving objects. Signal Process Image Commun 19:81–98CrossRefGoogle Scholar
  6. 6.
    Huang F (2000) Epipolar geometry in concentric panoramas, research report CTU-CMP-2000-07. University of Auckland, Auckland, New ZealandGoogle Scholar
  7. 7.
    ISO Standard IS 14444-1:2004 (2004) Information technology—JPEG 2000 image coding system: core coding systemGoogle Scholar
  8. 8.
    ISO Standard IS 14496-10 (2004) Information technology—coding of audio-visual objects—part 10: advanced video codingGoogle Scholar
  9. 9.
    ISO Standard IS 14496-2 (2004) Information technology—coding of audio-visual objects—part 2: visualGoogle Scholar
  10. 10.
    ISO/IEC Standard TR 15938 (2005) Information technology—multimedia content description interfaceGoogle Scholar
  11. 11.
    ISO/IEC 15948 (2004). Information technology—computer graphics and image processing—portable network graphics (PNG): functional specificationGoogle Scholar
  12. 12.
    ITU-R Recommendation BT.500-11 (2002) Methodology for the subjective assessment of the quality of television pictures. Geneva, SwitzerlandGoogle Scholar
  13. 13.
    ITU-R Recommendation H.264 (2005) Advanced video coding for generic audiovisual servicesGoogle Scholar
  14. 14.
    ITU-R Recommendation T.81 (1992) Information technology—digital compression and coding of continuous-tone still images—requirements and guidelinesGoogle Scholar
  15. 15.
    ITU-T Recommendation P.800 (1996) Methods for subjective determination of transmission quality. Geneva, SwitzerlandGoogle Scholar
  16. 16.
    ITU-T Recommendation T.800 (2004) Information technology—JPEG 2000 image coding system: core coding systemGoogle Scholar
  17. 17.
    Kaaranen H, Ahtiainen A, Laitinen L, Naghian S, Niemi V (2005) UMTS networks—architecture, mobility and services. Wiley, New YorkGoogle Scholar
  18. 18.
    Kamisetty C, Jawahar CV (2003) Multiview image compression using algebraic constraints. In: Proc. IEEE region 10 conference on convergent technologies (TENCON). Bangalore, India, pp 927–931Google Scholar
  19. 19.
    Kim DH, Yoon YI, Choi JS (2003) An efficient method to build panoramic image mosaics. Pattern Recogn Lett 24:2421–2429MATHCrossRefGoogle Scholar
  20. 20.
    Manjunath BS, Salembier P, Sikora T (2002) Introduction to MPEG-7 multimedia content description interface. Wiley, Chichester, EnglandGoogle Scholar
  21. 21.
    McLauchlan PF, Jaenicke A (2003) Image mosaicing using sequential bundle adjustment. Image Vis Comput 20:751–759CrossRefGoogle Scholar
  22. 22.
    Pardyka I (2006) Homography-based panoramic image sequence compression method. ICSES ’06. Lodz, Poland, pp 293–296Google Scholar
  23. 23.
    Pardyka I (2006) Panoramic image sequence compression method. Visualization, Imaging, and Image Processing (VIIP 2006). ACTA, Mallorca, Spain, pp 282–286Google Scholar
  24. 24.
    Shah M, Javed O, Shafique K (2007) Automated visual surveillance in realistic scenarios. IEEE Multimedia 14(1):30–39CrossRefGoogle Scholar
  25. 25.
    Szeliski R (2006) Image alignment and stitching: a tutorial. Foundations Trends Comput Graphics Vis 2(1):1–104CrossRefGoogle Scholar
  26. 26.
    Tian GY, Gledhill D, Taylor D (2003) Comprehensive interest points based imaging mosaic. Pattern Recogn Lett 24:1171–1179MATHCrossRefGoogle Scholar
  27. 27.
    Trakaa M, Tziritasa G (2003) Panoramic view construction. Signal Process Image Commun 18:465–481Google Scholar
  28. 28.
    Zhang C, Long Y, Kurdahi F (2005) Embedded computer systems: architectures, modeling, and simulation. In: Proceedings of the 5th international workshop SAMOS (SAMOS ’05) (Samos, Greece, July 18–20, 2005). Springer, Lecture Notes in Computer Science, vol. 3553. Berlin/Heidelberg, p 334Google Scholar
  29. 29.
    Zitova B, Flusser J (2003) Image registration methods: a survey. Image Vis Comput 21:977–1000CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Andrzej Glowacz
    • 1
  • Michał Grega
    • 1
  • Piotr Romaniak
    • 1
  • Mikołaj Leszczuk
    • 1
  • Zdzisław Papir
    • 1
  • Ignacy Pardyka
    • 2
  1. 1.AGH University of Science and TechnologyKrakowPoland
  2. 2.Swietokrzyska AcademyKielcePoland

Personalised recommendations