Multimedia Tools and Applications

, Volume 40, Issue 2, pp 151–182 | Cite as

DCAF: An MPEG-21 Dynamic Content Adaptation Framework

Article

Abstract

Universal Multimedia Access aims at providing a gratifying end user-experience by either adapting the content, be it static or dynamic, to suit the usage environment or adapting the usage environment, be it client- or server-centric, to suit content. This paper presents our MPEG-21 Dynamic Content Adaptation Framework, acronym DCAF, which uses a fusion of Genetic Algorithms and Strength Pareto Optimality to adapt content in order to suit the usage environment.

Keywords

Content adaptation Genetic Algorithms Pareto Optimality MPEG-21 

References

  1. 1.
    Angelides MC, Sofokleous AA, Parmar M (2006) Classified ranking of semantic content filtered output using self-organizing neural networks. In: Lecture notes in computer science 4132: proceedings of the 16th International Conference on Artificial Neural Networks (ICANN 2006) Part II, Athens, Greece, pp. 55–64Google Scholar
  2. 2.
    Angelides MC, Sofokleous AA, Schizas C (2005) Mobile computing with MPEG-21. In: Lecture notes in computer science 3823: proceedings of the IFIP International Conference on Embedded and Ubiquitous Computing (EUC 2005) Workshops: 2nd International Symposium on Ubiquitous Intelligence and Smart Worlds (UISW2005), Nagasaki, Japan, pp. 556–565Google Scholar
  3. 3.
    Bellard F (2006) FFmpeg Multimedia System, 2006, http://ffmpeg.mplayerhq.hu/. Accessed 10 June 2006
  4. 4.
    Boszormenyi L, Hellwagner H, Kosch H, Libsie M, Podlipnig S (2003) Metadata driven adaptation in the ADMITS project. Signal Process Image Commun 18(8):749–766CrossRefGoogle Scholar
  5. 5.
    Dan A, Kienzle M, Sitaram D (1995) A dynamic policy of segment replication for load-balancing in video-on-demand servers. Multimedia Syst 3(3):93–103CrossRefGoogle Scholar
  6. 6.
    Devillers S, Timmerer C, Heuer J, Hellwagner H (2005) Bitstream Syntax Description-Based Adaptation in Streaming and Constrained Environments. IEEE Trans Multimedia 7(3):463–470CrossRefGoogle Scholar
  7. 7.
    Di Cagno G, Concolato C, Claude Dufourd J (2006) Multimedia adaptation in end-user terminals. Signal Process Image Commun 21(3):200–216CrossRefGoogle Scholar
  8. 8.
    Feng N, Mau SC, Mandayam NB (2004) Pricing and Power Control for Joint Network-Centric and User-Centric Radio Resource Management. IEEE Trans Commun 52(9):1547CrossRefGoogle Scholar
  9. 9.
    Heijmans H (2006) MASCOT - Adaptive and Morphological Wavelets for Scalable Video Coding, 2002, http://www.ercim.org/publication/Ercim_News/enw48/heijmans.html. Accessed 15 July 2006
  10. 10.
    Huang J, Feng W, Walpole J (2006) An experimental analysis of DCT-based approaches for fine-grained multiresolution video. Multimedia Syst 11(6):513–531CrossRefGoogle Scholar
  11. 11.
    Hutter A, Amon P, Panis G, Delfosse E, Ransburg M, Hellwagner H (2005) “Automatic adaptation of streaming multimedia content in a dynamic and distributed environment. In: Proceedings of the IEEE International Conference on Image Processing (ICIP 2005), Genoa, Italy, pp. 716–719.Google Scholar
  12. 12.
    ISO/IEC 21000–7:2004, “Information technology—multimedia framework—part 7: Digital item adaptation”Google Scholar
  13. 13.
    Jannach D, Leopold K (2007) Knowledge-based multimedia adaptation for ubiquitous multimedia consumption. J Netw Comput Appl 30(3):958–982CrossRefGoogle Scholar
  14. 14.
    Jannach D, Leopold K, Timmerer C, Hellwagner H (2006) A knowledge-based framework for multimedia adaptation. Appl Intell 24(2):109–125CrossRefGoogle Scholar
  15. 15.
    Kasutani E (2004) New frontiers in universal multimedia access. Tech Rep ITS Report 04.22Google Scholar
  16. 16.
    Lei Z, Georganas ND (2001) Context-based media adaptation in pervasive computing. In: Proceedings of the IEEE Canadian Conference on electrical and computer engineering, Toronto, Ontario, Canada, pp. 913–918Google Scholar
  17. 17.
    Lucas C (2006) Practical Multiobjective Optimisation, 2006, http://www.calresco.org/lucas/pmo.htm. Accessed 10 February 2006
  18. 18.
    Mao ZM, So HW, Kang B (2001) Network support for mobile multimedia using a self-adaptive distributed proxy. In: Proceedings of the 11th ACM international workshop on network and operating systems support for digital audio and video, Port Jefferson, New York, United States, 2001, pp. 107–116Google Scholar
  19. 19.
    Mehra P, De Vleeschouwer C, Zakhor A (2005) Receiver-driven bandwidth sharing for TCP and its application to video streaming. IEEE Trans Multimedia 7(4):740–752CrossRefGoogle Scholar
  20. 20.
    Mohan R, Smith JR, Chung-Sheng L (1999) Adapting multimedia Internet content for universal access. IEEE Trans Multimedia 1(1):104–114CrossRefGoogle Scholar
  21. 21.
    Mukherjee D, Said A (2003) “Structured scalable meta-formats (SSM) for digital item adaptation. In: SPIE 5018: Proceedings on internet imaging IV, Santa Clara, California, USA, 2003, pp. 148–167Google Scholar
  22. 22.
    Mukherjee D, Delfosse E, Kim J, Wang Y (2005) Optimal adaptation decision-taking for terminal and network quality-of-service. IEEE Trans Multimedia 7(3):454–462CrossRefGoogle Scholar
  23. 23.
    Ohm JR (2005) Advances in scalable video coding. Proc IEEE 93(1):42–56CrossRefGoogle Scholar
  24. 24.
    Panis G, Hutter A, Heuer J, Hellwagner H, Kosch H, Timmerer C, Devillers S, Amielh M (2003) Bitstream syntax description: a tool for multimedia resource adaptation within MPEG-21. EURASIP Signal Process Image Commun 18(8):721–747CrossRefGoogle Scholar
  25. 25.
    Pereira F, Burnett I (2003) Universal multimedia experiences for tomorrow. IEEE Signal Process Mag 20(2):63–73CrossRefGoogle Scholar
  26. 26.
    Ranganathan P, Geelhoed E, Manahan M, Nicholas K (2006) Energy-aware user interfaces and energy-adaptive displays. IEEE Comput 39(3):31–38Google Scholar
  27. 27.
    Rong L, Burnett I (2004) Dynamic multimedia adaptation and updating of media streams with MPEG-21. In: Proceedings of the 1st IEEE Consumer Communications and Networking Conference(CCNC 2004), Las Vegas Nevada, USA, 2004, pp. 436–441Google Scholar
  28. 28.
    Sofokleous AA, Angelides MC (2006a) Client-Centric Usage Environment Adaptation using MPEG-21. J Mobile Multimedia 2(4):297–310Google Scholar
  29. 29.
    Sofokleous AA, Angelides MC (2006b) Content Adaptation on Mobile Devices using MPEG-21. J Mobile Multimedia 2(2):112–123Google Scholar
  30. 30.
    Steiger O, Ebrahimi T, Sanjuán DM (2003). MPEG-based personalized content delivery. In: Proceedings of the IEEE International Conference on Image Processing (ICIP'03), Barcelona, Spain, pp. 45–48Google Scholar
  31. 31.
    Sun H, Vetro A, Asai K (2003) Resource adaptation based on MPEG-21 usage environment descriptions. In: Proceedings of the IEEE International Symposium on Circuits and Systems (ISCAS), Bangkok, Thailand, pp. 536–539Google Scholar
  32. 32.
    Taubman D (2000) High performance scalable image compression with EBCOT. IEEE Trans Image Process 9(7):1158–1170CrossRefGoogle Scholar
  33. 33.
    Teller PJ, Seelam SR (2003) Insights into providing dynamic adaptation of operating system policies. ACM SIGOPS Oper Syst Rev 40(2):83–89CrossRefGoogle Scholar
  34. 34.
    Timmerer CH (2005) Interoperable adaptive multimedia communication. IEEE Multimed 12(1):74–79CrossRefGoogle Scholar
  35. 35.
    Tunali ET, Kantarci A, Ozbek N (2005) Robust quality adaptation for internet video streaming. Multimed Tools Appl 27(3):431–448CrossRefGoogle Scholar
  36. 36.
    Tusch R (2003) Towards an adaptive distributed multimedia streaming server architecture based on service-oriented components. In: Lecture notes in computer science 2789: proceedings of Joint Modular Languages Conference (JMLC 03), Klagenfurt, Austria, 2003, pp. 78–87Google Scholar
  37. 37.
    Tusch R, Boszormenyi L, Goldschmidt B, Hellwagner H, Schojer P (2004) Offensive and defensive adaptation in distributed multimedia systems. Comput Sci Inf Syst (ComSIS) 1(1):49–77Google Scholar
  38. 38.
    van Beek P, Smith JR, Ebrahimi T, Suzuki T, Askelof J (2003) Metadata-driven multimedia access. IEEE Signal Process Mag 20(2):40–52CrossRefGoogle Scholar
  39. 39.
    Van Veldhuizen DA, Lamont GB (2000) Multiobjective evolutionary algorithms: analyzing the state-of-the-art. Evol Comput 8(2):125–147CrossRefGoogle Scholar
  40. 40.
    Veeravalli B, Chen L, Kwoon HY, Whee GK, Lai SY, Hian LP, Chow HC (2006) Design, analysis, and implementation of an agent driven pull-based distributed video-on-demand system. Multimed Tools Appl 28(1):89–118CrossRefGoogle Scholar
  41. 41.
    Vetro A, Timmerer C (2005) Digital item adaptation: overview of standardization and research activities. IEEE Trans Multimedia 7(3):418–426CrossRefGoogle Scholar
  42. 42.
    Vetro A, Timmerer C, Devillers S (2006) Digital item adaptation - tools for universal multimedia access. In: Burnett IS, Pereira F, Van de Walle R, Koenen R (eds) The MPEG-21 Book. Wiley, Hoboken, NJ, USA, pp 282–331Google Scholar
  43. 43.
    Weiser M, Welch B, Demers A, Shenker S (1994) Scheduling for reduced CPU energy. In: Proceedings of the 1st symposium on Operating Systems Design and Implementation (OSDI ‘94), Monterey, California, pp. 13–23Google Scholar
  44. 44.
    Xin J, Lin CW, Sun MT (2005) Digital video transcoding. Proc IEEE 93(1):84–97CrossRefGoogle Scholar
  45. 45.
    Zitzler E, Thiele L (1999) Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach. IEEE Trans Evol Comput 3(4):257–271CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Anastasis A. Sofokleous
    • 1
  • Marios C. Angelides
    • 1
  1. 1.School of Information Systems, Computing and MathematicsBrunel UniversityUxbridgeUK

Personalised recommendations