Multimedia Tools and Applications

, Volume 38, Issue 1, pp 147–184 | Cite as

MI-MERCURY: A mobile agent architecture for ubiquitous retrieval and delivery of multimedia information

  • Nikolaos Papadakis
  • Anastasios Doulamis
  • Antonios Litke
  • Nikolaos Doulamis
  • Dimitrios Skoutas
  • Theodora Varvarigou
Article

Abstract

Mining multimedia information in the Web is in general an arduous task, due to the fact that, (a) humans perceive media content using high level concepts, (b) the subjective and vagueness of content interpretation, and (c) the fact that relevant data are often hidden in a huge amount of irrelevant information. In addition, delivering and distributing the retrieved information to a wide range of terminal devices of different properties over a wide range of networks to users of different preferences requires new tools and mechanisms for content transformation and adaptation. Other problems concern the language that the data are stored, which may not be the user’s preferred language. To address these issues we propose an integrated, reconfigurable, adaptable and open architecture for mining, indexing and retrieving multimedia information based on a mobile agent technology scheme. The proposed architecture consists of three integral subsystems: the acquisition module, responsible for searching and retrieving media data (both textual and visual), the transformation module, able to adapt and transform the mined information to other forms of representation, and the distribution module for delivering and adapting the retrieved data in terms of terminal devices, network channels and user’s preferences. The system is based on a reconfigurable architecture which is able to dynamically and automatically update the system response to user’s actual needs and preferences, by extending descriptor classes that are considered more relevant by the users. New innovative algorithms are presented in this paper both at each system module as well as in the system integration. The system supports efficient content adaptation mechanisms, textual and visual summarization (both sequential and hierarchical), automatic language translation, ontological representation, visual processing and web-based data mining. Experimental analysis on real-life web sites has been performed to test the efficiency of the proposed scheme and compare it with other approaches presented in the literature.

Keywords

Mobile agents Web mining Multimedia retrieval Summarization Content adaptation Adaptive delivery 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ahrens JH, Finke G (1975) Merging and sorting applied to the zero—one knapsack problem. Oper Res 23(6):1099–1109MATHCrossRefGoogle Scholar
  2. 2.
    Avrithis Y, Doulamis N, Doulamis A, Kollias S (1999) Optimization methods for key frames and scenes extraction. J Comput Vision Image Understanding, Academic Press 75(1/2):3–24 (July/August)CrossRefGoogle Scholar
  3. 3.
    Burnett I, van de Walle R, Hill K, Bormans J, Pereira F (2003) MPEG-21: goals and achievements. IEEE Multimedia Magazine 10(4):60–70 (October–December)CrossRefGoogle Scholar
  4. 4.
    Doulamis N, Doulamis A (2004) Optimal content-based video decomposition for interactive video navigation over IP-based networks. IEEE Trans Circuits Syst Video Technol 4(6):757–775 (June)CrossRefGoogle Scholar
  5. 5.
    Doulamis N, Doulamis A, Avrithis Y, Ntalianis K, Kollias S (2000) Efficient summarization of stereoscopic video sequences. IEEE Trans Circuits Syst Video Technol 10(4):501–517 (June)CrossRefGoogle Scholar
  6. 6.
    Doulamis N, Doulamis A, Kalogeras D, Kollias S (1998) Very low bit-rate coding of image sequences using adaptive regions of interest. IEEE Trans Circuits Syst Video Technol 8(8):928–934 (December)CrossRefGoogle Scholar
  7. 7.
    Doulamis AD, Doulamis ND, Kollias SD (2000) A fuzzy video content representation for video summarization and content-based retrieval. Signal Process, Elsevier Press 80:1049–1067 (June)MATHGoogle Scholar
  8. 8.
    Doulamis A, Doulamis N, Varvarigou T (2003) Efficient content-based image retrieval using fuzzy organization and optimal relevance feedback. Int J Image Graphics, Special Issue on Multimedia Data Storage and Management 14(No. 1):150–166 (January)Google Scholar
  9. 9.
    Drozdzynski W, Krieger H-U, Piskorski J, Schfer U, Xu F (2002) Shallow processing with unification and typed feature structures: foundations and applications. Proceedings of the International Conference on NLP (ICON 2002). Mumbai, India (December)Google Scholar
  10. 10.
    PANORAMA project: An intelligent system for retrieval and mining of audiovisual material. EPET-II Programme, Greek Ministry of Research and Development http://www.image.ece.ntva.gr/php/rd_details.php?proj=0
  11. 11.
    Etzioni O (1996) The world-wide web: quagmire or gold mine? Commun ACM 39(No. 11):65–68CrossRefGoogle Scholar
  12. 12.
    Flickner M, Sawhney H, Niblack W, Ashley J, Huang Q, Dom B, Gorkani M, Hafner J, Lee D, Petkovic D, Steele D, Yanker P (1995) Query by image and video content: the QBIC System. IEEE Computer Magazine:23–32 (September)Google Scholar
  13. 13.
    Gudivada VN, Raghavan JV (eds) (1995) Special issue on content-based image retrieval systems. IEEE Computer Magazine 28(9):18–62Google Scholar
  14. 14.
    Hanjalic A, Zhang H (1999) An integrated scheme for automated abstraction based on unsupervised cluster-validity analysis. IEEE Trans Circuits Syst Video Technol 9(8):1280–1289 (December)CrossRefGoogle Scholar
  15. 15.
    Intelligent content management system (ICONS) IST-2001-32429. http://www.icons.rodan.pl/
  16. 16.
    Irani M, Anandan P (1998) Video indexing based on mosaic representation. Proc IEEE 86(5):805–921 (May)CrossRefGoogle Scholar
  17. 17.
    ISO/IEC JTC 1/SC 29/WG 11/N3964,N3966 (2001) Multimedia Description Schemes (MDS) Group. Singapore (March)Google Scholar
  18. 18.
    Kasper W, Steffen J (2002) Multilingual, flexible and robust summarisation. Proceedings KONVENS–2002, SaarbrückenGoogle Scholar
  19. 19.
    Kasper W, Steffen J, Piskorski J, Buitelaar P (2004) Integrated language technologies for multilingual information services in the MEMPHIS project. Proceedings of the 4th International Conference on Language Resources and Evaluation, Lisbon, pp 1939–1942Google Scholar
  20. 20.
    Kushmerick N (2000) Wrapper induction: efficiency and expressiveness. Artif Intell 118(1–2):15–68MATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    MEMPHIS project (IST-2000-25045). www.ist-memphis.org
  22. 22.
    Mobile knowledge management (MUMMY) IST 2001-37365. http://mummy.felk.cvut.cz/
  23. 23.
    Morris OJ, Lee, MJ, Constantinides AG (1986) Graph theory for image analysis: an approach based on the shortest spanning tree. IEE Proceedings 133:146–152 (April)Google Scholar
  24. 24.
    MPEG-7 Visual part of eXperimentation Model Version 2.0 (1999) MPEG-7 Output Document ISO/MPEG (December)Google Scholar
  25. 25.
    MPEG MDS Group (2003) MPEG-21 framework, part 7: digital item adaptation (final committee draft), ISO/MPEG N5845 (July)Google Scholar
  26. 26.
    Multimedia International Digital Libraries (MIND) IST-2000-26061. http://www.mind-project.org
  27. 27.
    Papadakis N, Litke A, Skoutas D, Varvarigou T (2006) MEMPHIS: a mobile agent-based system for enabling acquisition of multilingual content and providing flexible format internet premium services. J Systems Archit 52:315–331CrossRefGoogle Scholar
  28. 28.
    Papadakis N, Skoutas D, Raftopoulos C, Varvarigou T (2005) An automatic web wrapper for extracting information from web sources, using clustering techniques. Proceedings of the International Symposium on Applications and the Internet (SAINT), Trento, Italy, pp 24–30Google Scholar
  29. 29.
    Papadakis N, Skoutas D, Raftopoulos C, Varvarigou T (2005) STAVIES: a system for information extraction from unknown web data sources through automatic web wrapper generation, using clustering techniques. IEEE Trans Knowl Data Eng 17:1638–1652CrossRefGoogle Scholar
  30. 30.
    Papoulis A (1984) Probability, random variables, and stochastic processes. McGraw Hill, New YorkMATHGoogle Scholar
  31. 31.
    Pereira F, Burnett I (2003) Universal multimedia experiences for tomorrow. IEEE Signal Process Mag 20(2):63–73 (March)CrossRefGoogle Scholar
  32. 32.
    Rui Y, Huang TS, Ortega M, Mehrotra S (1998) Relevance feedback: a power tool for interactive content-based image retrieval. IEEE Trans Circuits Syst Video Technol 8(5):644–655 (September)CrossRefGoogle Scholar
  33. 33.
    Salton G, Yang CS (1973) On the specification of term values in automatic indexing. J Doc 29:351–372CrossRefGoogle Scholar
  34. 34.
    Smith JR (1999) VideoZoom: spatio-temporal video browser. IEEE Trans Multimedia 1(2):157–171 (June)CrossRefGoogle Scholar
  35. 35.
    Tekalp A (1995) Digital video processing. Prentice Hall, Englewood Cliffs, New JerseyGoogle Scholar
  36. 36.
    Three-dimensional restitution via Internet of digital elevation networks in towns (TRIDENT) IST-1999-11678. http://www.trident3d.net/J.H.Ahrens and G.Finke
  37. 37.
    Vasconcelos N, Lippman A (1998) A spatiotemporal motion model for video summarization. Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition (CVPR), Santa Barbara, USA, pp 361–366 (June)Google Scholar
  38. 38.
    Vasconcelos N, Lippman A (2000) Statistical models of video structure for content analysis and characterization. IEEE Trans Image Process 9(1):3–19 (January)CrossRefGoogle Scholar
  39. 39.
    Vertan C, Boujemaa N (2000) Using fuzzy histograms and distances for color image retrieval. Proceedings of CIR 2000, Brighton, United Kingdom, pp 4–5 (May)Google Scholar
  40. 40.
    Weiser M (1993) Some computer science issues in ubiquitous computing. Commun ACM 36(7):74–84CrossRefGoogle Scholar
  41. 41.
    Yeo BL, Liu B (1995) Rapid scene analysis on compressed videos. IEEE Trans Circuits Syst Video Technol 5:533–544 (December)CrossRefGoogle Scholar
  42. 42.
    Yeung MM, Yeo B-L (1997) Video visualization for compact presentation and fast browsing of pictorial content. IEEE Trans Circuits Syst Video Technol 7(5):771–785 (October)CrossRefGoogle Scholar
  43. 43.
    Zhou XS, Huang TS (2001) Small sample learning during multimedia retrieval using biasMap. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Hawaii, pp 11–17 (December)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Nikolaos Papadakis
    • 1
  • Anastasios Doulamis
    • 1
  • Antonios Litke
    • 1
  • Nikolaos Doulamis
    • 1
  • Dimitrios Skoutas
    • 1
  • Theodora Varvarigou
    • 1
  1. 1.National Technical University of AthensZografouGreece

Personalised recommendations