Advertisement

Multimedia Tools and Applications

, Volume 35, Issue 1, pp 91–108 | Cite as

Multimedia data warehouses: a multiversion model and a medical application

  • Anne-Muriel ArigonEmail author
  • Maryvonne Miquel
  • Anne Tchounikine
Article

Abstract

In field such as Cardiology, data used for clinical studies is not only alphanumeric, but can also be composed of images or signals. Multimedia data warehouse then must be studied in order to provide an efficient environment for the analysis of this data. The analysis environment must include appropriate processing methods in order to compute or extract the knowledge embedded into raw data. Traditional multidimensional models have a static structure which members of dimensions are computed in a unique way. However, multimedia data is often characterized by descriptors that can be obtained by various computation modes. We define these computation modes as “functional versions” of the descriptors. We propose a Functional Multiversion Multidimensional Model by integrating the concept of “version of dimension.” This concept defines dimensions with members computed according to various functional versions. This new approach integrates different computation modes of these members into the proposed model, in order to allow the user to select the best representation of data. In this paper, a conceptual model is formally defined and a prototype for this study is presented. A multimedia data warehouse in the medical field has been implemented on a therapeutic study on acute myocardial infarction

Keywords

Data warehouse OLAP Multimedia data Functional version Multimedia data descriptor 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Agrawal R, Gupta A, Sarawagi S (1995) Modeling multidimensional databases. IBM Research Report, IBM Almaden Research Center, September 25pGoogle Scholar
  2. 2.
    Blaschka M, Sapia C, Höfling G (1999) On schema evolution in multidimensional databases. In: Data Warehousing and Knowledge Discovery, First International Conference, DaWaK ‘99, Florence, Italy, August 30–September 1, 1999, Proceedings. Lecture Notes in Computer Science 1676 Springer, ISBN 3-540-66458-0Google Scholar
  3. 3.
    Body M, Miquel M, Bédard Y, Tchounikine A (2003) Handling evolutions in multidimensional structures. In: Proceedings of the 19th International Conference on Data Engineering, March 5–8, 2003, Bangalore, India. IEEE Computer Society, ISBN 0-7803-7665-XGoogle Scholar
  4. 4.
    Cabibbo L, Torlone R (1998) A logical approach to multidimensional databases. In: Advances in Database Technology—EDBT’98, 6th International Conference on Extending Database Technology, Valencia, Spain, March 23–27, 1998, Proceedings. Lecture Notes in Computer Science 1377 Springer, ISBN 3-540-64264-1.Google Scholar
  5. 5.
    Chaudhuri S, Dayal U (1997) An overview of data warehousing and OLAP technology. SIGMOD Record, 26(1):65–74CrossRefGoogle Scholar
  6. 6.
    Chevalier P, Rodriguez C, Bontemps L, Miquel M, Kirkorian G, Rousson R, Potet F, Schott JJ, Baró I, Touboul P (2001) Non-invasive testing of acquired long QT syndrome: evidence for multiple arrhythmogenic substrates. Cardiovasc Res 50(2):386–398 MayCrossRefGoogle Scholar
  7. 7.
    Eder J, Koncilia C (2001) Evolution of dimension data in temporal data warehouses. In: Proceedings of the Data Warehousing and Knowledge Discovery, Third International Conference, DaWaK 2001, Munich, Germany, September 5–7, 2001, Lecture Notes in Computer Science 2114 Springer, ISBN 3-540-42553Google Scholar
  8. 8.
    Gyssens M, Lakshmanan LVS (1997) A foundation for multi-dimensional databases. In: Proceedings of the 23rd International Conference on Very Large Data 9. Bases, August 25–29, 1997, Athens, Greece. Morgan Kaufmann, ISBN 1-55860-470-7Google Scholar
  9. 9.
    Han J, Kamber M (2001) Data mining, concepts and techniques. Morgan KaufmannGoogle Scholar
  10. 10.
    Hristovski D, Rogac M, Markota M (2000) Using data warehousing and OLAP in public health care. In: Proceedings AMIA Symp: 369–373Google Scholar
  11. 11.
    Hurtado C, Mendelzon AO, Vaisman A (1999) Maintaining data cubes under dimension updates. In: Proceedings of the 15th International Conference on Data Engineering, 23–26 March 1999, Sydney, Australia, IEEE Computer Society PressGoogle Scholar
  12. 12.
    Hurtado C, Mendelzon AO, Vaisman A (1999) Updating OLAP dimensions. In: Proceedings of the ACM Second International Workshop on Data Warehousing and OLAP, November 6, 1999, Kansas City, Missouri, USA, Proceedings. ACMGoogle Scholar
  13. 13.
    Huyn N (2001) Data analysis and mining in the life sciences. Sigmod Record, 30(3):76–85 SeptemberCrossRefGoogle Scholar
  14. 14.
    Inmon WH (eds) (1996) Building the data warehouse, 3rd edn, Wiley, New YorkGoogle Scholar
  15. 15.
    Isken MW, Littig SJ, West M (2001) A data mart for operations analysis. J Healthc Inf Manag (JHIM) 15(2):SummerGoogle Scholar
  16. 16.
    Jarke M, List T, Köller J (2000) The challenge of process data warehousing. In: Proceedings of 26th International Conference on Very Large Data Bases, September 10–14, 2000, Cairo, Egypt. Morgan Kaufmann, ISBN 1-55860-715-3Google Scholar
  17. 17.
    Kamp V, Wietek F (1997) Database system for multidimensional data analysis. In: Proceeding of the International Database Engineering and Application Symposium 1997 (IDEAS) Concordia University, Montreal, Canada, August 25–27Google Scholar
  18. 18.
    Kimball R (1996) The data warehouse toolkit. Wiley, New YorkGoogle Scholar
  19. 19.
    Lehner W (1998) Modeling large OLAP scenarios. In: Proceedings of the 1998 International Conference on Extending Database Technology, Valencia, SpainGoogle Scholar
  20. 20.
    Li C, Sean Wang X (1996) A data model for supporting on-line analytical processing. In: Proceedings of the Fifth International Conference on Information and Knowledge Management, November 12–16, 1996, Rockville, MD, USA. ACMGoogle Scholar
  21. 21.
    Mendelzon AO, Vaisman A (2000) Temporal queries in OLAP. In: Proceedings of 26th International Conference on Very Large Data Bases, September 10–14, 2000, Cairo, Egypt. Morgan Kaufmann, ISBN 1-55860-715-3.Google Scholar
  22. 22.
    Niinimäki J, Selén G, Kailajärvi M, Grönroos P, Irjala K, Forsström JJ (1996) Medical data warehouse, an investment for better medical care. Medical Informatics in Europe (MIE’96), Copenhagen, Denmark, AugustGoogle Scholar
  23. 23.
    Pedersen TB, Jensen C (1998) Research issues in clinical data warehousing. In: 10th International Conference on Scientific and Statistical Database Management, Proceedings, Capri, Italy, July 1–3, 1998. IEEE Computer Society, ISBN 0-8186-8575-1Google Scholar
  24. 24.
    Pedersen TB, Jensen C, Dyreson C (2001) A foundation for capturing and querying complex multidimensional data. Inf Syst 26(5): Special issue: Data WarehousingGoogle Scholar
  25. 25.
    Tchounikine A, Miquel M, Flory A (2001) Information warehouse for medical research. In: Data Warehousing and Knowledge Discovery, Third International Conference, DaWaK 2001, Munich, Germany, September 5–7, 2001, Proceedings. Lecture Notes in Computer Science 2114 Springer, ISBN 3-540-42553-5Google Scholar
  26. 26.
    Tikekar RV, Fotouhi F, Ragan D (1995) Storage and retrieval of medical images from data warehouses. Digital Image Storage and Archiving SystemsGoogle Scholar
  27. 27.
    Vassiliadis P (1998) Modeling multidimensional databases, cubes and cube operations. In: 10th International Conference on Scientific and Statistical Database Management, Proceedings, Capri, Italy, July 1–3, 1998. IEEE Computer Society, ISBN 0-8186-8575-1Google Scholar
  28. 28.
    Vassiliadis P, Sellis T (1999) A survey of logical models for OLAP databases. SIGMOD Record, 28(1):64–69, MarchCrossRefGoogle Scholar
  29. 29.
    You J et al. (2001) On hierarchical multimedia information retrieval. In: Proceedings of the 2001 International Conference on Image Processing (ICIP 2001), Thessaloniki, Greece, October 7–10 IEEE.Google Scholar
  30. 30.
    Zaïane OR, Han J, Li ZH, Hou J (1998) Mining multimEdia data. In: Proceedings of CASCON’98: Meeting of Minds, pp 83–96, Toronto, Canada, NovemberGoogle Scholar
  31. 31.
    Zhang H et al. (2001) Developing a digital mammography data warehouse. Medical ImagingGoogle Scholar
  32. 32.
    Zücker R, Kietz JU, Vaduva A (2001) Mining mart: metadata-driven preprocessing. In: Principles of Data Mining and Knowledge Discovery, 5th European Conference, PKDD 2001, Freiburg, Germany, September 3–5, 2001, Proceedings. Lecture Notes in Computer Science 2168 Springer, ISBN 3-540-42534-9.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Anne-Muriel Arigon
    • 1
    Email author
  • Maryvonne Miquel
    • 2
  • Anne Tchounikine
    • 2
  1. 1.Laboratoire de Biométrie et Biologie EvolutiveLBBE UMR CNRS 5558, UCBLVilleurbanne CedexFrance
  2. 2.Laboratoire d’InfoRmatique en Images et Systèmes d’informationLIRIS UMR CNRS 5205, INSAVilleurbanne CedexFrance

Personalised recommendations