Multimedia Tools and Applications

, Volume 33, Issue 1, pp 73–90 | Cite as

The Berlin Brain-Computer Interface (BBCI) – towards a new communication channel for online control in gaming applications

  • Roman Krepki
  • Benjamin Blankertz
  • Gabriel Curio
  • Klaus-Robert Müller
Article

Abstract

The investigation of innovative Human-Computer Interfaces (HCI) provides a challenge for future multimedia research and development. Brain-Computer Interfaces (BCI) exploit the ability of human communication and control bypassing the classical neuromuscular communication channels. In general, BCIs offer a possibility of communication for people with severe neuromuscular disorders, such as Amyotrophic Lateral Sclerosis (ALS) or spinal cord injury. Beyond medical applications, a BCI conjunction with exciting multimedia applications, e.g., a dexterity game, could define a new level of control possibilities also for healthy customers decoding information directly from the user’s brain, as reflected in electroencephalographic (EEG) signals which are recorded non-invasively from user’s scalp. This contribution introduces the Berlin Brain–Computer Interface (BBCI) and presents setups where the user is provided with intuitive control strategies in plausible gaming applications that use biofeedback. Yet at its beginning, BBCI thus adds a new dimension in multimedia research by offering the user an additional and independent communication channel based on brain activity only. First successful experiments already yielded inspiring proofs-of-concept. A diversity of multimedia application models, say computer games, and their specific intuitive control strategies, as well as various Virtual Reality (VR) scenarios are now open for BCI research aiming at a further speed up of user adaptation and increase of learning success and transfer bit rates.

Keywords

Brain-Computer Interface Electroencephalography Digital Signal Processing Machine Learning Biofeedback Human-Computer Interaction Brain-gaming 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Berger H (1929) Über das Elektroenzephalogramm des Menschen. Archiv Psychiatrischer Nervenkrankheiten 87:527–580CrossRefGoogle Scholar
  2. 2.
    Birbaumer N (1997) Slow cortical potentials: their origin meaning and clinical use. In: Brain and behavior: past, present and future. Tilburg University Press, Tilburg, pp 25–39Google Scholar
  3. 3.
    Birbaumer N, Ghanayim N, Hinterberger T, Iversen I, Kotchoubey B, Kübler A, Perelmouter J, Taub E, Flor H (1999) Spelling device for the paralyzed. Nature 398:297–298CrossRefGoogle Scholar
  4. 4.
    Blankertz B, Curio G, Müller K-R (2002) Classifying single trial EEG: towards brain computer interfacing. Adv Neural Inf Process Syst 14:157–164Google Scholar
  5. 5.
    Blankertz B, Dornhege G, Schäfer C, Krepki R, Kohlmorgen J, Müller K-R, Kunzmann V, Losch F, Curio G (2003) Boosting bit rates and error detection for the classification of fast-pace motor commands based on single-trial EEG analysis. IEEE Trans Neural Syst Rehabil Eng 11(2):127–131CrossRefGoogle Scholar
  6. 6.
    Cui RQ, Huter D, Lang W Deecke L (1999) Neuroimage of voluntary movement: topography of the Bereitschaftspotential, a 64-channel DC current source density study. NeuroImage 9:124–134CrossRefGoogle Scholar
  7. 7.
    Donchin E, Smith DB (1970) The contingent negative variation and the late positive wave of the average evoked potential. Electroencephalogr Clin Neurophysiol 29:201–203CrossRefGoogle Scholar
  8. 8.
    Ebrahimi T, Vesin J-M, Garcia G (2003) Brain–computer interface. A new frontier in multimedia communication. IEEE Signal Processing Society–Signal Process Mag 20(1):14–24CrossRefGoogle Scholar
  9. 9.
    Green JB, Sora E, Bialy Y, Ricamato A, Thatcher RW (1999) Cortical motor reorganization after paraplegia: an EEG study. Neurology 53(4):736–743Google Scholar
  10. 10.
    Hardwick A, Rush J, Furner S, Seton J (1996) Feeling it as well as seeing it. Haptic displays within gestural HCI for multimedia. In: Proceedings of the York Gesture Workshop, University of York, York, Great Britain, March 96, pp 105–116Google Scholar
  11. 11.
    Harel D, Carmel L, Lancet D (2003) Towards an odor communication system. Computational Biology and Chemistry 27:121–133MATHCrossRefGoogle Scholar
  12. 12.
    Lang W, Zilch O, Koska C, Lindinger G Deecke L (1989) Negative cortical DC shifts preceding and accompanying simple and complex sequential movements. Experiments in Brain Research 74:99–104Google Scholar
  13. 13.
    MacIntyre B, Feiner S (1996) Future multimedia user interfaces. Multimed Syst J 4(5):250–268CrossRefGoogle Scholar
  14. 14.
    MacKenzie IS (1991) Fitt’s law as a performance model in human–computer interaction. Doctoral dissertation, University of Toronto, CanadaGoogle Scholar
  15. 15.
    Mika S, Rätsch G, Müller K-R (2001) A mathematical programming approach to the kernel fisher algorithm. Adv Neural Inf Process Syst 13:591–597Google Scholar
  16. 16.
    Müller K-R, Mika S, Rätsch G, Tsuda K, Schölkopf B (2001) An introduction to kernel-based learning algorithms. IEEE Trans Neural Netw 12(2):181–201CrossRefGoogle Scholar
  17. 17.
    Nicolelis MAL, Chapin JK (2002) Controlling robots with the mind. Sci Am 287(4):46–53CrossRefGoogle Scholar
  18. 18.
    Pantic M, Rothkrantz LJM (2000) Automatic analysis of facial expressions. IEEE Trans Pattern Anal Mach Intell 22(12):1424–1445CrossRefGoogle Scholar
  19. 19.
    Pentland A (1995) Machine understanding of human action. In: Proceedings of the 7th international forum frontier of telecommunication technology, Tokyo, Japan, November 1995, pp.757–764Google Scholar
  20. 20.
    Pfurtscheller G (1999) EEG event-related desynchronization (ERD) and event-related synchronization (ERS). In: Electroencephalography: basic principals, clinical applications and related fields, 4th edn. Williams and Wilkins, Baltimore, MD, pp 958–967Google Scholar
  21. 21.
    Pfurtscheller G, Flotzinger D, Kalcher J (1993) Brain–computer interface. A new communication device for handicapped persons. J Microcomput Appl 16:293–299CrossRefGoogle Scholar
  22. 22.
    Sharbrough F, Chatrian G-E, Lesser RP, Lüders H, Nuwer M, Picton TW (1991) American Electroencephalographic Society guidelines for standard electrode position nomenclature. J Clin Neurophysiol 8:200–202CrossRefGoogle Scholar
  23. 23.
    Sutter EE (1992) The brain response interface: communication through visually induced electrical brain responses. J Microcomput Appl 15:31–45CrossRefGoogle Scholar
  24. 24.
    Vapnik V (1995) The nature of statistical learning theory. Springer, Berlin Heidelberg New YorkMATHGoogle Scholar
  25. 25.
    Wolpaw JR, McFarland DJ, Neat GW, Forneris GW (1991) An EEG-based brain–computer interface for cursor control. Electroencephalogr Clin Neurophysiol 78:252–259CrossRefGoogle Scholar
  26. 26.
    Wolpaw JR, Birbaumer N, McFarland DJ, Pfurtscheller G, Vaughan TM (2002) Brain–computer interfaces for communication and control. Clin Neurophysiol 113:767–791CrossRefGoogle Scholar
  27. 27.
    Krepki R (2004) Brain-Computer Interfaces. Design and implementation of an online BCI-System for the control in gaming applications and virtual limbs. Doctoral dissertation, Technical University of Berlin, GermanyGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Roman Krepki
    • 1
  • Benjamin Blankertz
    • 1
  • Gabriel Curio
    • 2
  • Klaus-Robert Müller
    • 1
    • 3
  1. 1.Fraunhofer Institute for Computer Architecture and Software Technology (FhG-FIRST)Research Group for Intelligent Data Analysis (IDA)Koenigstein i.Ts.Germany
  2. 2.Neurophysics Group, Department of Neurology, Klinikum Benjamin FranklinFreie Universität BerlinBerlinGermany
  3. 3.Computer Science DepartmentUniversity of PotsdamPotsdamGermany

Personalised recommendations