Skip to main content
Log in

Simulation of the Growth Kinetics of γ′-Nitride Layers on Armco Iron by the Integral Method

  • SIMULATION
  • Published:
Metal Science and Heat Treatment Aims and scope

The integral method is used to simulate the kinetics of growth of γ′-phase layers during nitriding of Armco iron in a microwave discharge chamber. Solution of the system of differential algebraic equations is used to assess the diffusivity of nitrogen in the γ′-phase layers in the temperature range of 773 – 843 K at a surface concentration of nitrogen equal to 5.9 wt.%. The computed activation energy of nitrogen diffusion and the predicted values of the thickness of the γ′-phase layer are compared to reported data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

References

  1. M. Keddam, “Characterization of the nitrided layers of XC38 carbon steel obtained by R.F. plasma nitriding,” Appl. Surf. Sci., 254, 2276 – 2280 (2008).

    Article  CAS  Google Scholar 

  2. M. Keddam, B. Bouarour, R. Kouba, and R. Chegroune, “Evaluation of the diffusion coefficient of N in γ′ iron nitride: Influence of the nitriding potential,” Defect Diff. Forum, 283 – 286, 133 – 138 (2009).

    Article  Google Scholar 

  3. M. Berg, C. V. Budtz-Jergensen, H. Reitz, et al., “On plasma nitriding of steels,” Surf. Coat. Technol., 124, 25 – 31 (2000).

    Article  CAS  Google Scholar 

  4. F. Bottoli, M. S. Jellesen, T. L. Christiansen, et al., “High temperature solution-nitriding and low-temperature nitriding of AISI 316: Effect on pitting potential and crevice corrosion performance,” Appl. Surf. Sci., 431, 24 – 31 (2018).

    Article  CAS  Google Scholar 

  5. F. M. El-Hossary, N. Z. Negm, A. M. Abd El-Rahman, et al., “Tribo-mechanical and electrochemical properties of plasma nitriding titanium,” Surf. Coat. Technol., 276, 658 – 667 (2015).

    Article  CAS  Google Scholar 

  6. J. G. Buijnsters, P. Shankar, J. Sietsma, and J. J. ter Meulen, “Gas nitriding of chromium in NH3– H2 atmosphere,” Mater. Sci. Eng. A, 341, 289 – 295 (2003).

    Article  Google Scholar 

  7. Yu. V. Borisyuk, N. M. Oreshnikova, M. A. Berdnikova, et al., “Plasma nitriding of titanium alloy Ti5Al4V2Mo,” Phys. Proc., 71, 105 – 109 (2015).

    Article  CAS  Google Scholar 

  8. D. Pye, Practical Nitriding and Ferritic Nitrocarburizing, ASM Int. Materials Park, Ohio (2003).

    Google Scholar 

  9. T. Bell, et al., “Controlled nitriding in ammonia-hydrogen mixtures,” in: Source Book on Nitriding, Amer. Soc. Met. (1977).

    Google Scholar 

  10. M. A. J. Somers and E. J. Mittemeijer, “Layer-growth kinetics on gaseous nitriding of pure iron: Evaluation of diffusion coefficient for nitrogen in iron nitrides,” Metall. Mater. Trans. A, 28, 57 – 74 (1995).

    Article  Google Scholar 

  11. H. Du and J. Agren, “Theoretical treatment of nitriding and nitrocarburizing of iron,” Metall. Mater. Trans. A, 27, 1073 – 1080 (1996).

    Article  Google Scholar 

  12. L. Torchane, P. Bilger, J. Dulcy, and M. Gantois, “Control of iron nitride layers growth kinetics in the binary Fe – N system,” Metall. Mater. Trans. A, 27, 1823 – 1835 (1996).

    Article  Google Scholar 

  13. L. Maldzinski, W. Liliental, G. Tymowski, and J. Tacikowski, “New possibilities for controlling gas nitriding process by simulation of growth kinetics of nitride layers,” Surf. Eng., 15, 377 – 384 (1999).

    Article  CAS  Google Scholar 

  14. M. Yan, J. Yan, and T. Bell, “Numerical simulation of nitrided layer growth and nitrogen distribution in γ′-Fe2-3 N, γ′-Fe4N and α-Fe during pulse plasma nitriding of pure iron,” Model. Simul. Mater., 8, 491 – 496 (2000).

    Article  CAS  Google Scholar 

  15. E. Manuel-Hernández, J. Antonio-Otero, A. Jiménez, et al., “Modeling of compound layer growth during nitriding of pure iron,” Sci. Res. Ess., 11, 135 – 146 (2016).

    Article  Google Scholar 

  16. M. Keddam, M. Ortiz-Domínguez, M. Elias-Espinosa, et al., “Kinetic investigation and wear properties of Fe2B layers on AISI 12L14 steel,” Metall. Mater. Trans. A, 49, 1895 – 1907 (2018).

    Article  CAS  Google Scholar 

  17. M. Elias-Espinosa, M. Keddam, M. Ortiz-Domínguez, et al., “Investigation of growth kinetics of Fe2B layers on AISI 1518 steel by the integral method,” High Temp. Mater. Proc. (2018) (DOI: https://doi.org/https://doi.org/10.1515/htmp-2017-0166).

  18. J. Zuno-Silva, M. Keddam, M. Ortiz-Domínguez, et al., “Kinetics of formation of Fe2B layers on AISI S1 steel,” Mater. Res., 21(5), e20180173 (2018).

    Article  CAS  Google Scholar 

  19. M. Keddam, M Elias-Espinosa, M. Ortiz-Domínguez, et al., “Pack-boriding of AISI P20 steel: Estimation of boron diffusion coefficients in the Fe2B layers and tribological behaviour,” Int. J. Surf. Sci. Eng., 11, 563 – 585 (2017).

    Article  CAS  Google Scholar 

  20. M. Ortiz-Domínguez, M. Keddam, M. Elias-Espinosa, et al., “Characterization and boriding kinetics of AISI T1 steel,” Metall. Res. Technol., 116, 102 (2019).

    Article  Google Scholar 

  21. M. Keddam and M. Kulka, “Analysis of the growth kinetics of Fe2 B layers by the integral method,” J. Min. Metall., Sect. B-Metall., 54(3), 361 – 367 (2018).

    Article  CAS  Google Scholar 

  22. I. Campos, R. Torres, O. Bautista, et al., “Evaluation of the diffusion coefficient of nitrogen in Fe4N1–x nitride layers during microwave post-discharge nitriding,” Appl. Surf. Sci., 249, 54 – 59 (2005).

    Article  CAS  Google Scholar 

  23. T. R. Goodman, “Application of integral methods to transient nonlinear heat transfer,” Adv. Heat Transfer, 1, 51 – 122 (1964).

    Article  CAS  Google Scholar 

  24. W. H. Press, B. P. Flannery, and S. A. Teukolsky, Numerical Recipes in Pascal: the Art of Scientific Computing, Cambridge University (1989).

    Google Scholar 

  25. H. Du and J. Agren, “Gaseous nitriding iron — evaluation of diffusion of N in γ′ and ε phases,” Z. Metallkd., 86, 522 – 529 (195).

  26. A. Marciniak, “Equilibrium and nonequilibrium models of layer formation during plasma and gas nitriding,” Surf. Eng., 4, 283 – 288 (1985).

  27. John W. Eaton, David Bateman, and Soren Hauberg, GNU Octave Manual, Version 3 (2007).

  28. M. Keddam, M. E. Djeghlal, and L. Barrallier, “A simple diffusion model for the growth kinetics of iron nitride on the pure iron substrate,” Appl. Surf. Sci., 242, 369 – 374 (2005).

    Article  CAS  Google Scholar 

  29. J. Kunze, “Thermodynamic calculation of phase diagrams in the iron-nitrogen system,” Steel Res. Int., 57, 361 – 367 (1986).

    Article  CAS  Google Scholar 

  30. J. D. Fast and M. B. Verrijp, “Diffusion of nitrogen in iron,” J. Iron Steel Inst., 176, 24 – 27 (1954).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Keddam.

Additional information

Translated from Metallovedenie i Termicheskaya Obrabotka Metallov, No. 8, pp. 42 – 47, August, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Keddam, M., Kulka, M. Simulation of the Growth Kinetics of γ′-Nitride Layers on Armco Iron by the Integral Method. Met Sci Heat Treat 62, 529–533 (2020). https://doi.org/10.1007/s11041-020-00597-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11041-020-00597-y

Key words

Navigation