Advertisement

Effect of Heat Treatment on Microstructure and Mechanical Properties of Alloy Mg – 10% Gd – 3% Y – 0.6% Zr

  • Zhi-bing Ding
  • Ruo-peng Lu
  • Hua HouEmail author
  • Jin-zhong Tian
  • Yu-hong Zhao
Article
  • 1 Downloads

The microstructure, mechanical properties and fracture behavior of magnesium alloy Mg – 10% Gd – 3% Y – 0.6% Zr is studied in cast condition and after T4 and T6 treatments. It is shown that in cast condition the alloy contains an α-phase (a magnesium-base solid solution) and a Mg24(Gd, Y)5 eutectic phase. After the solution treatment the eutectic phase dissolves in the α-matrix containing cuboid particles of a phase enriched with gadolinium and yttrium. The hardness and the tensile strength criteria are used to determine the optimum treatment for the cast alloy, i.e., 8-h solution treatment at 500°C and 16-h aging at 220°C (T6). This mode of heat treatment provides the best mechanical properties.

Key words

magnesium alloys heat treatment microstructure mechanical properties fracture 

Notes

The work has been supported by the Project of International Cooperation of the Ministry of Science and Technology of China (No. 2014DFA50320), the National Foundation for Natural Sciences of China (No. 51674226, 51574207, 51574206, 51204147, 51274175), the Project on International Technological Cooperation of the Shanxi Province (No. 2015081041), and the Project on Science and Technology of the Shanxi Province (No. 2015031012).

References

  1. 1.
    W. C. Liu, L. K. Jiang, L. Cao, et al., “Fatigue behavior and plain-strain fracture toughness of sand-cast Mg – 10Gd – 3Y – 0.5Zr magnesium alloy,” Mater. Des., 59, 466 – 474 (2014).CrossRefGoogle Scholar
  2. 2.
    L. Zheng, C. M. Liu, Y. C. Wan, et al., “Microstructures and mechanical properties of Mg – 10Gd – 6Y– 2Zn – 0.6Zr (wt.%) alloy,” J. Alloys Compd., 509, 8832 – 8839 (2011).CrossRefGoogle Scholar
  3. 3.
    C. Xu, M. Y. Zheng, S. W. Xu, et al., “Ultra high-strength Mg – Gd – Y – Zn – Zr alloy sheets processed by large-strain hot rolling and ageing,” Mater. Sci. Eng. A, 547, 93 – 98 (2012).CrossRefGoogle Scholar
  4. 4.
    A. A. Luo, “Recent magnesium alloy development for elevated temperature applications,” J. Mater. Sci., 1, 2 – 22 (2013).Google Scholar
  5. 5.
    A. Luo, “Cast magnesium alloys for elevated temperature applications,” J. Mater. Sci., 49, 13 – 30 (2004).Google Scholar
  6. 6.
    C. Suman, SAE Technical Paper 910416, Soc. Automotive Engineers, Warrendale, PA (1991).Google Scholar
  7. 7.
    J. Wang, J. Meng, D. P. Zhang, and D. X. Tang, “Effect of Y for enhanced age hardening response and mechanical properties of Mg – Ho – Y – Zr alloys,” Mater. Sci. Eng. A, 456, 78 – 84 (2007).CrossRefGoogle Scholar
  8. 8.
    H. R. Jafari Nodooshan, W. C. Liu, G. H. Wu, et al., “Microstructure characterization and high-temperature shear strength of the Mg – 10D – 3Y – 1.2Zn – 0.5Zr alloy in the as-cast and aged conditions,” J. Alloys Compd., 619, 826 – 833 (2015).CrossRefGoogle Scholar
  9. 9.
    S. M. He, X. Q. Zeng, L. M. Peng, et al., J. Alloys Compd., 421, 309 – 313 (2006).CrossRefGoogle Scholar
  10. 10.
    S. M. He, X. Q. Zeng, L. M. Peng, et al., “Precipitation in a Mg – 10Gd – 3Y – 0.4Zr (wt.%) alloy during isothermal ageing at 250°C,” J. Alloys Compd., 427, 316 – 323 (2007).CrossRefGoogle Scholar
  11. 11.
    M. Sun, G. H. Wu, W. Wang, and W. J. Ding, “Effect of Zr on the microstructure, mechanical properties and corrosion resistance of Mg – 10Gd – 3Y magnesium alloy,” Mater. Sci. Eng. A., 523, 145 – 151 (2009).CrossRefGoogle Scholar
  12. 12.
    J. W. Chang, X. W. Guo, S. M. He, et al., “Investigation of the corrosion for Mg – xGd – 3Y – 0.4Zr (x = 6, 8, 10, 12 wt.%) alloys in a peak-aged condition,” Corros. Sci., 50, 166 – 177 (2008).CrossRefGoogle Scholar
  13. 13.
    H. R. Jafari Nodooshan, W. C. Liu, G. H. Wu, et al., “Effect of Gd content on microstructure and mechanical properties of Mg – Gd – Y – Zr alloys under peak-aged condition,” Mater. Sci. Eng. A, 615, 79 – 86 (2014).CrossRefGoogle Scholar
  14. 14.
    L. Huo, Z. Q. Han, and B. C. Liu, “Effect of microstructure on tensile and fatigue properties of cast Mg – 10Gd – 2Y – 0.5Zr alloy,” Int. J. Cast Met. Res., 22, 123 – 126 (2009).CrossRefGoogle Scholar
  15. 15.
    T. Honma, T. Ohkubo, K. Hono, and S. Kamado, “Chemistry of nanoscale precipitates in Mg – 2.1Gd – 0.6Y – 0.2Zr (at.%) alloy investigated by the atom probe technique,” Mater. Sci. Eng. A, 395, 301 – 306 (2005).CrossRefGoogle Scholar
  16. 16.
    F. Yang, F. Lv, X.M. Yang, et al., “Enhanced very high cycle fatigue performance of extruded Mg – 12Gd – 3Y – 0.5Zr magnesium alloy,” Mater. Sci. Eng. A, 528, 2231 – 2238 (2011).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Zhi-bing Ding
    • 1
  • Ruo-peng Lu
    • 1
  • Hua Hou
    • 1
    Email author
  • Jin-zhong Tian
    • 1
  • Yu-hong Zhao
    • 1
  1. 1.College of Materials Science and EngineeringNorth University of ChinaTaiyuanChina

Personalised recommendations