Advertisement

Effect of Heat Treatment on the Microstructure and Mechanical Properties of the Friction Stir Processed AZ91D Magnesium Alloy

  • M. Govindaraju
  • R. Vaira VigneshEmail author
  • R. Padmanaban
MAGNESIUM ALLOYS
  • 8 Downloads

We study the microstructure and mechanical properties of friction stir processed AZ91D cast magnesium alloy under various conditions of heat treatment. It is shown that, in the initial as-cast state, the structure of the alloy contained a continuously networked β-phase with an average grain size of 150 μm. The friction stir processed (FSP) specimens had an average grain size of 12 μm and smooth grain boundaries. The subsequent heat treatment of the FSP specimens at various temperatures between 150°C and 250°C led to the appearance of numerous particles of the β-phase. The FSP specimens heat-treated at 200°C had finer grains, a larger number of fine particles of the β-phase, and better mechanical properties than any other specimens.

Key words

magnesium alloy friction stir processing heat treatment microstructure tensile strength 

References

  1. 1.
    A. A. Luo, “Applications: aerospace, automotive and other structural applications of magnesium,” in: Fundamentals of Magnesium Alloy Metallurgy, Woodhead Publ., (2013), p. 266 – 316.Google Scholar
  2. 2.
    Y. Estrin, S. S. Nene, B. P. Kashyap, N. Prabhu, and T. Al-Samman, Mater. Lett., 173 (2016) 252 – 256.CrossRefGoogle Scholar
  3. 3.
    M. K. Kulekci, Int. J. Adv. Manuf. Technol., 39, 851 – 865 (2008).CrossRefGoogle Scholar
  4. 4.
    A. Luo, J. Renaud, I. Nakatsugawa, and J. Plourde, JOM, 47, 28 – 31 (1995).CrossRefGoogle Scholar
  5. 5.
    M. Easton, A. Beer, M. Barnett, C. Davies, G. Dunlop, Y. Durandet, S. Blacket, T. Hilditch, and P. Beggs, J. Minerals, Metals & Mater. Soc., 60, 57 – 62 (2008).CrossRefGoogle Scholar
  6. 6.
    A. A. Luo and A. K. Sachdev, “Applications of magnesium alloys in automotive engineering,” in: Advances in Wrought Magnesium Alloys, Woodhead Publ. (2012), pp. 393 – 426.Google Scholar
  7. 7.
    S. Shrestha, A. Sturgeon, P. Shashkov, and A. Shatrov, “Improved corrosion performance of AZ91D magnesium alloy coated with the Keronite_process,” in: Essential Readings in Magnesium Technology, Springer (2016), pp. 603 – 607.Google Scholar
  8. 8.
    R. S. Mishra and Z. Y. Ma, Mater. Sci. Eng. R: Reports, 50, 1 – 78 (2005).CrossRefGoogle Scholar
  9. 9.
    J. D. Robson, S. Cui, and Z. W. Chen, Mater. Sci. Eng. A, 527, 7299 – 7304 (2010).CrossRefGoogle Scholar
  10. 10.
    F. Chai, D. Zhang,W. Zhang, and Y. Li, Mater. Sci. Eng. A, 590, 80 – 87 (2014).CrossRefGoogle Scholar
  11. 11.
    D. Ni, D. Wang, A. Feng, G. Yao, and Z. Ma, Scr. Mater., 61, 568 – 571 (2009).CrossRefGoogle Scholar
  12. 12.
    P. Cavaliere and P. P. De Marco, J. Mater. Proc. Technol., 184, 77 – 83 (2007).CrossRefGoogle Scholar
  13. 13.
    A. H. Feng and Z. Y. Ma, Scr. Mater., 56, 397 – 400 (2007).CrossRefGoogle Scholar
  14. 14.
    W. H. Loke, R. Ibrahim, and S. Lathabai, “Improving the microstructure and mechanical properties of a cast Mg – 9Al –1Zn alloy using friction stir processing,” Mater. Sci. Forum, 838 – 839, 214 – 219 (2016).CrossRefGoogle Scholar
  15. 15.
    Z. Lu and D. Zhang, “Microstructure and mechanical properties of a fine-grained AZ91 magnesium alloy prepared by multipass friction stir processing,” Mater. Sci. Forum, 850, 778 – 783 (2016).CrossRefGoogle Scholar
  16. 16.
    R. S. Mishra, P. S. De, and N. Kumar, “Fundamental physical metallurgy background for FSW/P,” in: Friction Stir Welding and Processing: Science and Engineering, Springer: Cham. (2014) p. 59 – 93.Google Scholar
  17. 17.
    R. Vaira Vignesh and R. Padmanaban, Trans. Indian Inst. Metals, 1 – 15 (2017);  https://doi.org/10.1007/s12666-017-1110-1.CrossRefGoogle Scholar
  18. 18.
    R. Vaira Vignesh, R. Padmanaban, M. Arivarasu, S. Thirumalini, J. Gokulachandran, and R. Mutyala Sesha Satya Sai, IOP Conf. Ser.: Mater. Sci. Eng., 149, 012208 (2016).Google Scholar
  19. 19.
    S. Mohan Kumar, R. Pramod, M. E. Shashi Kumar, and H. K. Govindaraju, Proc. Eng., 19, 178 – 185 (2014).CrossRefGoogle Scholar
  20. 20.
    M. Arivarasu, P. Roshith, R. Padmanaban, S. Thirumalini, K. V. Phani Prabhakar, and G. Padmanabham, Canad. Metallurg. Quart., 56, 232 – 244 (2017).CrossRefGoogle Scholar
  21. 21.
    T. Regułaa, E. Czekaja, A. Fajkiela, K. Saja, M. Lech-Gregab, and M. Bronickic, Arch. Foundry Eng., 10, 141 – 146 (2010).Google Scholar
  22. 22.
    F. Vesling and T. Ryspaev, Russ. J. Non-Ferrous Met., 48, 57 – 62 (2007).CrossRefGoogle Scholar
  23. 23.
    Y. Wang, G. Liu, and Z. Fan, Acta Mater., 54, 689 – 699 (2006).CrossRefGoogle Scholar
  24. 24.
    J. Liao, M. Hotta, K. Kaneko, and K. Kondoh, Scr. Mater., 61, 208 – 211 (2009).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • M. Govindaraju
    • 1
  • R. Vaira Vignesh
    • 1
    Email author
  • R. Padmanaban
    • 1
  1. 1.Department of Mechanical Engineering, Amrita School of EngineeringCoimbatoreIndia

Personalised recommendations