Effect of Molybdenum on the Microstructure and Oxidation Behavior of Hot-Pressed TaCr2 Alloys

  • Jing Yao
  • Shi-qiang Lu
  • Xuan Xiao
  • Li-ping Deng

Influence of molybdenum additions on the microstructure and corrosion resistance of powder alloys based on the TaCr2 Laves phase is studied. The phase composition of the alloys in different conditions is determined. Growth in the mass of the alloys is determined after 100-h oxidation at 900°C. The effect of the molybdenum additions on the structure and properties of the TaCr2 -base alloys is shown to be positive. An optimum composition is suggested.

Key words

intermetallic Laves phase microstructure oxidation 


The authors would like to thank the following grants of the China governmental funding agencies for support of the study: The National Natural Science Foundation (grant No. 51161020), The Aviation Science Foundation (grant No. 2015ZF56024 and the Key Laboratory for Microstructural Control of Metallic Materials of the Jiangxi Province (Nanchang Hangkong University) (grant No. JW201423001).


  1. 1.
    J. H. Zhu, L. M. Pike, C. T. Liu, and P. K. Liaw, “Point defects in binary NbCr2 Laves-phase alloys,” Scr. Mater., 39, 833 – 838 (1998).CrossRefGoogle Scholar
  2. 2.
    Y. H. He, P. K. Liaw, Y. Lu, et al., “Effects of processing on the microstructure and mechanical behavior of binary Cr – Ta alloys,” Mater. Sci. Eng. A, 329 – 331 (2002).Google Scholar
  3. 3.
    A. Bhowmik and H. J. Stone, “Microstructure and mechanical properties of two-phase Cr – Cr2 Ta alloys,” Metall. Mater. Trans., 43A, 3283 – 3292 (2012).CrossRefGoogle Scholar
  4. 4.
    T. Takssug, “Defect structures and room-temperature mechanical properties of C15 Laves phase in Zr – X – Cr (X: Nb, Ta, and Hf) alloy systems,” Mater. Sci. Forum, 502, 169 – 174 (2005).CrossRefGoogle Scholar
  5. 5.
    M. Fujita, Y. Kaneno, and T. Takasugi, “Phase field and room-temperature mechanical properties of C15 Laves phase in Nb – Hf – Cr and Nb – Ta – Cr alloy systems,” J. Alloys Compd., 424, 283 – 288 (2006).CrossRefGoogle Scholar
  6. 6.
    D. F.Wang, P. K. Liaw, C. T. Liu, and E. P. Georeg, “Processing and microstructures of Cr – Ta and Cr – Ta – Mo composites reinforced by the Cr2 Ta Laves phase,” Office of Sci. Tech. Inform. Tech. Reports, 1 – 8 (2003).Google Scholar
  7. 7.
    T. Ohta, Y. Kaneno, H. Inoue, T. Takasugi, and S. Hanada, “Phase field and room-temperature mechanical properties of the C15 Laves phase in the Zr – Ta – Cr alloy system,” Metall. Mater. Trans. A, 36(3), 583 – 590 (2005).CrossRefGoogle Scholar
  8. 8.
    M. P. Brady, C. T. Liu, J. H. Zhu, et al., “Effects of Fe additions on the mechanical properties and oxidation behavior of Cr2Ta Laves phase reinforced Cr,” Scr. Mater., 52(9), 815 – 819 (2005).CrossRefGoogle Scholar
  9. 9.
    A. Bhowmik, R. J. Bennett, B. Monserrat, et al., “Alloys based on Cr – Cr2 Ta containing Si,” Intermetallics, 48(5), 62 – 70 (2014).CrossRefGoogle Scholar
  10. 10.
    H. Z. Zheng, S. Q. Lu, J. Y. Shu, and W. Zhou, “Effects of Al on the microstructure and fracture toughness of NbCr2 alloys,” Rare Metal Mater. Eng. (in Chinese), 38(1), 80 – 85 (2009).Google Scholar
  11. 11.
    R. H. Tien, J. H. Zhu, C. T. Liu, and L. R.Walker, “Effect of Ru additions on microstructure and mechanical properties of Cr – TaCr2 alloys,” Intermetallics, 13(3–4), 361 – 366 (2005).CrossRefGoogle Scholar
  12. 12.
    A. Bhowmik, C. N. Jones, I. M. Edmonds, and H. J. Stone, “Effect of Mo, Al, and Si on the microstructure and mechanical properties of Cr – Cr2 Ta based alloys,” J. Alloys Compd., 530, 169 – 177 (2012).CrossRefGoogle Scholar
  13. 13.
    W. B. Pearson, The Crystal Chemistry and Physics of Metals and Alloys, JohnWiley and Sons Ltd., New York (1972), p. 151.Google Scholar
  14. 14.
    S. Q. Lu, H. Z. Zheng, L. P. Deng, and J. Yao, “Effects of silicon on the fracture toughness and oxidation behavior of hot pressed NbCr2 alloys,” Mater. Design, 51, 432 – 437 (2013).CrossRefGoogle Scholar
  15. 15.
    H. J. T. Ellingham, “Reducibility of oxides and sulfides in metallurgical processes,” Trans. Commun., J. Soc. Chem. Industry, 63, 125 – 139 (1944).CrossRefGoogle Scholar
  16. 16.
    P. Massard, J. C. Bernier, and A. Michel, “Effet Jahn–Teller dans le systeme Ta2CrO6 and TaCrO4 ,” J. Solid State Chem., 4(2), 269 – 274 (1972).CrossRefGoogle Scholar
  17. 17.
    M. A. Eissa, M. A. Elmasry, and M. F. Abadir, “Thermal study of the Cr – Mo – O system in air,” J. Thermal Anal. Calorim., 52(2), 584 – 594 (1998).Google Scholar
  18. 18.
    F. H. Wang, “The effect of nanocrystallization on the selective oxidation and adhesion of Al2O3 scales,” Oxid. Met., 48, 215 – 224 (1997).CrossRefGoogle Scholar
  19. 19.
    G. F. Chen and H. Y. Lou, “The effect of nanocrystallization on the oxidation resistance of Ni – 5Cr – 5Al alloy,” Scr. Mater., 41(8), 883 – 887 (1999).CrossRefGoogle Scholar
  20. 20.
    S. Hong and C. L. Fu, “Theoretical study on cracking behavior in two-phase alloys Cr – Cr2 X (X = Hf, Nb, Ta, Zr),” Intermetallics, 9(9), 799 – 805 (2001).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Jing Yao
    • 1
    • 2
  • Shi-qiang Lu
    • 1
    • 3
  • Xuan Xiao
    • 3
  • Li-ping Deng
    • 1
    • 2
  1. 1.College of Materials Science and TechnologyNanjing University of Aeronautics and AstronauticsNanjingP. R. China
  2. 2.School of Materials Science and EngineeringNanchang Hangkong UniversityNanchangP. R. China
  3. 3.School of Aeronautical Manufacturing EngineeringNanchang Hangkong UniversityNanchangP. R. China

Personalised recommendations