Advertisement

Metal Science and Heat Treatment

, Volume 61, Issue 1–2, pp 96–100 | Cite as

Effect of the Rate of Multiaxial Compression at Room Temperature on the Evolution of Microstructure of Commercial-Purity Aluminum

  • Y. Yang
  • S. J. Yang
  • Z. Wang
  • X. F. Gao
Article
  • 18 Downloads

Commercial-purity aluminum of grade 1050 obtained by uniaxial or multiaxial compression at room temperature at deformation rates from 1.2 × 103 to 1.0 × 10 − 3 sec − 1 is studied. The true strain per one pass is kept constant while the total strain amounts to 1.6 in uniaxial deformation and to 3.0 in multiaxial one. The microstructure is determined using a transmission electron microscope. The high-rate deformation is shown to be the most effective for refining the structure due to elevation of the dislocation density and suppression of the dynamic recovery.

Key words

strain rate aluminum multiaxial compression grain refinement dislocation structure 

Notes

The work has been supported by the National Natural Science Foundation of China (No. 51274245, No. 51574290), NSAF (No. U1330126), the Ph. D. Programs Foundation of the Ministry of Education of China (No. 20120162130006), the Hunan Provincial Natural Science Foundation of China (No. 14JJ2011), and the key project of the State Key Laboratory of Explosion Science and Technology (No. KFJJ11-1).

References

  1. 1.
    M. A. Meyers, A. Mishra, and D. J. Benson, Progr. Mater. Sci., 51, 427 − 556 (2006).CrossRefGoogle Scholar
  2. 2.
    K. S. Kumar, H. V. Swygenhoven, and S. Suresh, Acta Mater., 51, 5743 − 577 (2003).CrossRefGoogle Scholar
  3. 3.
    Y. M. Yang, K. Wang, and D. Pan, Scr. Mater., 48, 1581 – 1586 (2003).CrossRefGoogle Scholar
  4. 4.
    V. M. Imayev and G. A. Salishchev, Scr. Mater., 40, 183 − 190 (1998).CrossRefGoogle Scholar
  5. 5.
    Z. Horita, T. Fujinami, and M. Nemoto, J. Mater. Proc. Technol., 117, 288 − 292 (2001).CrossRefGoogle Scholar
  6. 6.
    V. M. Segal, V. I. Reznikov, A. E. Drobyshevskiy, and V. I. Kopylov, Russian Metallurgy, 1, 99 − 105 (1981).Google Scholar
  7. 7.
    V. M. Segal, Mater. Sci. Eng. A, 338, 331 − 344 (2002).CrossRefGoogle Scholar
  8. 8.
    R. Z. Valiev, Y. Estrin, Z. Horita, et al., JOM, 58, 33 − 39 (2006).CrossRefGoogle Scholar
  9. 9.
    V. M. Segal, Mater. Sci. Eng. A, 197, 157 − 164 (1995).CrossRefGoogle Scholar
  10. 10.
    R. Z. Valiev and T. G. Langdon, Progr. Mater. Sci., 51, 881 − 981 (2006).CrossRefGoogle Scholar
  11. 11.
    Y. Z. Wu and H. G. Yan, Mater. Sci. Eng. A., 556, 164 − 169 (2012).CrossRefGoogle Scholar
  12. 12.
    A. Belyakov, T. Sakai, H. Miura, and K. Tsuzaki, Philos. Mag. A, 81, 2629 − 2643 (2001).CrossRefGoogle Scholar
  13. 13.
    A. Azushima, R. Kopp, A. Korhonen, et al., CIRP Annals Manuf. Technol., 57, 716 − 735 (2008).CrossRefGoogle Scholar
  14. 14.
    A. Vorhauer and R. Pippan, Scr. Mater., 51, 921 − 925 (2004)CrossRefGoogle Scholar
  15. 15.
    Y. Saito, H. Utsunomiya, N. Tsuji, and T. Sakai, Acta Mater., 47, 579 − 583 (1999).CrossRefGoogle Scholar
  16. 16.
    N. Tsuji, Y. Saito, S. Lee, and Y. Minamino, Adv. Eng. Mater., 5, 338 − 344 (2003).CrossRefGoogle Scholar
  17. 17.
    J. Richert and M. Richert, Aluinum, 62, 604 − 607 (1986).Google Scholar
  18. 18.
    M. Richet, H. P. Stuwe, M. J. Zehetbauer, et al., Mater. Sci. Eng. A, 355, 180 − 185 (2003).CrossRefGoogle Scholar
  19. 19.
    H. W. Zhang, X. Huang, and N. Hansen, Acta Mater., 56, 5451 − 5465 (2008).CrossRefGoogle Scholar
  20. 20.
    D. A. Hughes and N. Hansen, Acta Mater., 45, 3871 − 3886 (1997).CrossRefGoogle Scholar
  21. 21.
    Z. P. Luo, H. W. Zhang, N. Hansen, and K. Lu, Acta Mater., 60, 1322 − 1333 (2012).CrossRefGoogle Scholar
  22. 22.
    H. J. Mc Queen and J. F. Hockett, Metall. Trans., 1, 2997 − 3004 (1970).Google Scholar
  23. 23.
    Y. S. Li, N. R. Tao, and K. Lu, Acta Mater., 56, 230 − 241 (2008).CrossRefGoogle Scholar
  24. 24.
    F. Yan, H. W. Zhang, N. R. Tao, and K. Lu, J. Mater. Sci. Technol., 27, 673 − 679 (2011).CrossRefGoogle Scholar
  25. 25.
    Yang Yang, Fei Ma, Hai Bo Hu, et al., J. Mater. Res., 606, 3502 − 3509 (2014).Google Scholar
  26. 26.
    Yang Yang, Ya Dong Chen, Hai Bo Hu, et al., J. Mater. Res., 30, 3502 − 3509 (2016).CrossRefGoogle Scholar
  27. 27.
    M. A. Meyers, Dynamic Behavior of Materials, John Wiley & Sons Inc., New York (1994), pp. 1557 − 1562.CrossRefGoogle Scholar
  28. 28.
    D. Kuhlmann-wildorf and N. Hansen, Scr. Metall. Mater., 25, 1557 − 1562 (1991).CrossRefGoogle Scholar
  29. 29.
    Z. Y. Yao, Q. Liu, and A. Godfrey, Acta Metall. Sinica, 45, 647 − 651 (2009).Google Scholar
  30. 30.
    M. A. Mogilevsky, Mechanisms of Deformation under Shock Loading, Springer US (1981), pp. 531 − 546.Google Scholar
  31. 31.
    M. A. Meyers, Scr. Metall., 12, 21 − 26 (1978).CrossRefGoogle Scholar
  32. 32.
    R. W. Cahn and P. Hansen, Physical Metallurgy, The Netherlands, North-Holland, Amsterdam (1996), Vol. 4, pp. 1869 − 1870.Google Scholar
  33. 33.
    D. L. Holt, J. Appl. Phys., 41, 3197 − 3201 (1970).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Y. Yang
    • 1
    • 2
    • 3
  • S. J. Yang
    • 1
  • Z. Wang
    • 1
  • X. F. Gao
    • 1
  1. 1.School of Material Science and EngineeringCentral South UniversityChangshaChina
  2. 2.Institute of Fluid PhysicsChina Academy of Engineering PhysicsMianyangChina
  3. 3.Key Laboratory of the Ministry of Education for Nonferrous Metal Materials Science and EngineeringCentral South UniversityChangshaChina

Personalised recommendations