Advertisement

Effect of Heat Treatment on the Structure and Phase Composition of a High-Temperature Nickel Alloy Obtained by Laser Cladding

  • D. V. MasayloEmail author
  • A. V. Orlov
  • S. D. Igoshin
Article
  • 2 Downloads

Modes of laser cladding of heat-resistant nickel alloy Inconel 625 are considered. The gas-powder flow is studied and optimized as a function of the flow rate of the protective and transporting gas. The effect of the heat treatment modes on the structure and phase composition of the alloy is analyzed. Amode producing compact samples of the alloy is worked out.

Key words

laser cladding heat-resistant nickel alloy Inconel 625 heat treatment microstructure 

References

  1. 1.
    V. A. Popovich, E. V. Borisov, A. A. Popovich, et al., “Functionally graded Inconel 718 processed by additive manufacturing: Crystallographic texture, anisotropy of microstructure and mechanical properties,” Mater. Design, 114, 441 – 449 (2017).CrossRefGoogle Scholar
  2. 2.
    B. Mueller, “Additive manufacturing technologies — Rapid prototyping to direct digital manufacturing,” Assembly Autom., 32(2), 311 – 319 (2012).CrossRefGoogle Scholar
  3. 3.
    S. M. Ahmadi, Rkak Jain, A. A. Zadpoor, et al., “Effects of heat treatment on microstructure and mechanical behavior of additive manufactured porous Ti6Al4V,” IOP Conf. Ser., Mater. Sci. Eng., IOP Publ., 293(1), 012009 (2017).Google Scholar
  4. 4.
    D. D. Gu, W. Meiners, K. Wissenbach, and R. Poprawe, “Laser additive manufacturing of metallic component: materials, processes and mechanisms,” Int. Mater. Rev., 57(3), 133 – 164 (2012).CrossRefGoogle Scholar
  5. 5.
    G. N. Colvin, et al., Method for Making Composite Casting Susingrein for Cement Insert Cladding, Patent 5678298 USA (1997).Google Scholar
  6. 6.
    A. I. Rudskoy, S. Yu. Kondrat’ev, and V. N. Kokorin, “Pressing of heterophase moistened powder metallic mixtures for raising the quality of high-density billets using the method of intense compaction,” Sprav. Inzh. Zh. Prilozh., No. 6, 12 – 16 (2011).Google Scholar
  7. 7.
    Y. S. Lee, “Admissible tool orientation of gouging avoidance for 5-axis complex surface machining,” Comp.-Aided Design, 29(7), 507 – 521 (1997).CrossRefGoogle Scholar
  8. 8.
    L. E. Murr, S. M. Gaytan, D. A. Ramirez, et al., “Metal fabrication by additive manufacturing gusing laser and electron beam melting technologies,” J. Mater. Sci. Technol., 28(1), 1 – 14 (2012).CrossRefGoogle Scholar
  9. 9.
    A. Popovich, V. Sufiiarov, I. Polozov, et al., “Producing hip implants of titanium alloys by additive manufacturing,” Int. J. Bioprinting, 2(2), 187 – 193 (2016).CrossRefGoogle Scholar
  10. 10.
    Donghong Ding, Zengxi Pan, Dominic Cuiuri, and Huijun Li, “Wire-feed additive manufacturing of metal components: technologies, developments and future interests,” Int. J. Adv. Manuf. Technol., 81(1–4), 465 – 481 (2015).Google Scholar
  11. 11.
    S.W.Williams, F. Martina, A. Addison, et al., “Wire + arc additive manufacturing,” Mater. Sci. Technol., 32(7), 641 – 647 (2016).CrossRefGoogle Scholar
  12. 12.
    P. M. Sequeira Almeida, Process Control and Development in Wire and Arc Additive Manufacturing, Author’s Abstract of Candidate’s Thesis, Cranfield University (2012).Google Scholar
  13. 13.
    V. S. Sufiiarov, A. A. Popovich, E. V. Borisov, et al., “The effect of layer thickness at selective laser melting,” Proc. Eng., 174, 126 – 134 (2017).CrossRefGoogle Scholar
  14. 14.
    S. A. Khairallah, A. T. Anderson, A. Rubenchik, andW. E. King, “Laser power-bed fusion additive manufacturing: Physics of complex melt flow and formation mechanisms of pores, spatter, and denudation zones,” Acta Mater., 108, 36 – 45 (2016).CrossRefGoogle Scholar
  15. 15.
    S. Dong, Y. Ma, B. Xu, W. Han, et al., “Current status of material for laser cladding,” Mater. Rev., 6, 002 (2006).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.National Technology Initiative “New Production Technologies”Center at Peter the Great St. Petersburg Polytechnic UniversitySt. PetersburgRussia

Personalised recommendations