Advertisement

Metal Science and Heat Treatment

, Volume 60, Issue 11–12, pp 715–721 | Cite as

A Study of Modes of Hardening Heat Treatment of Titanium Alloy VT23

  • O. V. Kondrat’eva
  • S. Yu. Kondrat’ev
  • O. V. Shvetsov
Article
  • 38 Downloads

The microstructure and mechanical properties of alloy VT23 are studied after different variants of quenching and aging. The best combination of mechanical properties is obtained after 1-h water quenching from 850°C and 10-h aging at 550°C. This mode of heat treatment yields a homogeneous globular α + β structure providing high characteristics of strength, ductility and toughness.

Key words

titanium alloy VT23 quenching and aging mechanical properties microstructure crack resistance 

References

  1. 1.
    E. N. Kablov, “Strategic directions of advancement of materials and technologies of their processing for a period of up to 2030,” Aviats. Mater. Tekhnol., No. 8, 7 – 17 (2012).Google Scholar
  2. 2.
    V. V. Antipov, “Strategy of development of titanium, magnesium, beryllium and aluminum alloys,” Aviats. Mater. Tekhnol., No. 8, 157 – 167 (2012).Google Scholar
  3. 3.
    V. I. Gorynin, S. Yu. Kondrat’ev, M. I. Olenin, and V. V. Rogozhkin, “A concept of carbide design of steel with improved cold resistance,” Metal. Sci. Heat Treat., 56(9–10), 548 – 554 (2015).CrossRefGoogle Scholar
  4. 4.
    V. V. Matveev, G. Ya. Yaroslavskii, B. S. Chaikovskii, and S. Yu. Kondrat’ev, Copper-Based High-Damping Alloys [in Russian], Naukova Dumka, Kiev (1986), 208 p.Google Scholar
  5. 5.
    S. Yu. Kondrat’ev, O. G. Zotov, G. Ya. Yaroslavskii, et al., “Investigation of interrelationship between damping capacity and mechanical properties as well as morphology of martensite in alloys with reversible martensite transformation,” Prob. Prochn., 14(3), 79 – 82 (1983).Google Scholar
  6. 6.
    S. Yu. Kondrat’ev, G. Ya. Yaroslavskii, and B. S. Chaikovskii, “Classification of high-damping metallic materials,” Strength Mater., 18(10), 1325 – 1329 (1986).CrossRefGoogle Scholar
  7. 7.
    M. D. Fuks, A. S. Oryshchenko, S. Yu. Kondrat’ev, and G. P. Anastasiadi, “Long-term strength of cast refractory alloy 45Kh26N33S2B2,” Nauch.-Tekh. Vedomosti St. Peterburg Gosud. Politekh. Univ., No. 159, 92 – 96 (2012).Google Scholar
  8. 8.
    U. Zwicker, Titanium and Titanium Alloys [Russian translation], Metallurgiya, Moscow (1979), 509 p.Google Scholar
  9. 9.
    A. I. Khorev, “Titanium alloy VT23 and its comparison to foreign counterparts,” Titan, No. 1(18), 47 – 52 (2006).Google Scholar
  10. 10.
    A. A. Il’in, B. A. Kolychev, and I. S. Pol’kin, Titanium Alloys. Composition, Structure, Properties [in Russian], VILS – MATI, Moscow (2009), 520 p.Google Scholar
  11. 11.
    A. I. Khorev, “Universal-application complexly alloyed titanium alloy VT23,” Tekhnol. Mashinostr., No. 7, 5 – 11 (2007).Google Scholar
  12. 12.
    V. D. D’yachkov, Development of Heat-Treatment Process and Methodology for Assessing the Operating Capacity of High-Strength Cladding Structures from Titanium Alloy VT23, Author’s Abstract of Candidate’s Thesis [in Russian], 05.16.01, 05.02.01, Moscow (1999), 23 p.Google Scholar
  13. 13.
    A. A. Il’in, B. A. Kolychev, and I. S. Pol’kin, Titanium Alloys. Composition, Structure, Properties [in Russian], VILS – MATI, Moscow (2009), 520 p.Google Scholar
  14. 14.
    S. V. Putyrskii, A. A. Arislanov, A. L. Yakovlev, and N. A. Nochovnaya, “A study of mechanical properties of deformed semiproducts from alloys VT23M and VT43, estimation of their climatic stability in the Arctic climate,” Trudy VIAM, No. 4(64), 101 – 110 (2018).CrossRefGoogle Scholar
  15. 15.
    A. A. Popov, Processes of Decomposition of Metastable β -phase in High-Alloy Titanium Alloys and Development of Modes of Hardening Heat and Thermomechanical Treatment, Author’s Abstract of Doctoral’s Thesis [in Russian], Sverdlovsk (1988), 44 p.Google Scholar
  16. 16.
    A. L. Yakovlev and N. A. Nochovnaya, “Effect of heat treatment on the properties of sheets from high-strength titanium alloy VT23M,” Aviats. Mater. Tekhnol., No. 4, 8 – 13 (2013).Google Scholar
  17. 17.
    A. I. Khorev, “Creation of a theory of complex alloying and development of universal-application titanium alloy VT23,” Vest. Mashinostr., No. 9, 40 – 46 (2006).Google Scholar
  18. 18.
    A. I. Khorev, “Principal scientific and practical directions for raising the stability of mechanical properties of α + β titanium alloys with high and superhigh strength,” in: Ti–2010 in the CIS [in Russian], Ekaterinburg (2010), pp. 227 – 235.Google Scholar
  19. 19.
    A. A. Popov, A. G. Illarionov, and A. V. Korelin, “Formation of structure and properties in titanium alloys of a transition class after warm rolling,” Metal. Sci. Heat Treat., 42(9–10), 348 – 352 (2000).Google Scholar
  20. 20.
    A. G. Illarionov, A. A. Popov, S. V. Grib, and O. A. Elkina, “Special features of formation of omega-phase in titanium alloys due to hardening,” Metal. Sci. Heat Treat., 52(9–10), 493 – 498 (2011).CrossRefGoogle Scholar
  21. 21.
    V. I. Gorynin, S. Yu. Kondrat’ev, and M. I. Olenin, “Raising the resistance of pearlitic and martensitic steels to brittle fracture under thermal action on the morphology of the carbide phase,” Metal. Sci. Heat Treat., 55(9–10), 533 – 539 (2014).CrossRefGoogle Scholar
  22. 22.
    V. I. Gorynin, S. Yu. Kondrat’ev, and M. I. Olenin, “Raising the fracture resistance of pearlitic steels due to nanostructured transformation of the carbide phase under additional tempering,” Zagot. Proizvod. Mashinostr., No. 2, 42 – 48 (2013).Google Scholar
  23. 23.
    M. Ya. Brun and G. V. Shakhanova, “On the structure of titanium alloys and parameters determining its variety,” Tekhnol. Met., No. 4, 41 – 48 (2009).Google Scholar
  24. 24.
    A. A. Popov, “Precipitation of particles of second phases in R titanium alloys,” in: Heat Treatment and the Physics of Metals [in Russian], Izd. UPI, Sverdlovsk (1985), Iss. 10, pp. 9 – 15.Google Scholar
  25. 25.
    A. A. Popov, “Processes of decomposition of metastable R phase in titanium alloys with different initial structures,” in: Heat Treatment and the Physics of Metals [in Russian], Izd. UPI, Sverdlovsk (1987), Iss. 12, pp. 3 – 8.Google Scholar
  26. 26.
    A. A. Popov, “Special features of metastable R-phase in deformation of titanium alloys of transition class,” Izv. Vysh. Uchebn. Zaved., Tsvet. Met., No. 1, 36 – 42 (1998).Google Scholar
  27. 27.
    V. M. Maistrov, Formation of Structure in High-Strength Titanium Alloy VT23 under Heat Treatment and Substantiation of Methods for Raising Its Mechanical Properties, Author’s Abstract of Candidate’s Thesis [in Russian], Moscow (1986), 26 p.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • O. V. Kondrat’eva
    • 1
  • S. Yu. Kondrat’ev
    • 2
    • 3
  • O. V. Shvetsov
    • 3
  1. 1.“Kirov Plant” CompanySt. PetersburgRussia
  2. 2.National Technology Initiative “New Production Technologies”Center at Peter the Great St. Petersburg Polytechnic UniversitySt. PetersburgRussia
  3. 3.Peter the Great St. Petersburg Polytechnic UniversitySt. PetersburgRussia

Personalised recommendations