Advertisement

Metal Science and Heat Treatment

, Volume 60, Issue 9–10, pp 680–685 | Cite as

Formation of Transition Zones Under Spark Plasma Sintering of Dissimilar Steels

  • A. A. NikulinaEmail author
  • V. S. Timofeev
  • I. N. Gradusov
  • A. S. Ivashutenko
Article
  • 23 Downloads

Results of mathematical simulation of the distribution of the concentrations of carbon and alloying elements in the zone of interaction of dissimilar microvolumes formed by spark plasma sintering of particles of steels 12Kh18N10T and U8 at various sintering temperatures and times, results of investigations of the structure of the specimens, and results of a regression analysis of experimental data are presented. The laws of formation of transition zones are described with the use of regression analysis based on the generalized lambda-distribution and on the method of truncated least squares. The processed data make it possible to identify the effect of the sintering mode on the structure of the transition zones. The results of the diffraction studies and their statistical analysis prove the results of the statistical simulation of the chemical composition.

Key words

spark plasma sintering dissimilar steels mathematical simulation microstructure statistical analysis heterogeneous data robust methods 

Notes

The work has been performed with financial support of the Ministry of Education and Science of the Russian Federation (Agreement No. 14.610.21.0013, Project Identifier RFMEF161017X0013).

References

  1. 1.
    B. S. Bokshtein, Diffusion in Metals [in Russian], Metallurgiya, Moscow (1978), 248 p.Google Scholar
  2. 2.
    M. A. Krishtal, Mechanism of Diffusion in Iron Alloys [in Russian], Metallurgiya, Moscow (1972).Google Scholar
  3. 3.
    B. Ya. Lyubov, The Kinetic Theory of Phase Transformations [in Russian], Metallurgiya, Moscow (1969), 264 p.Google Scholar
  4. 4.
    A. A. Nikulina, A. A. Bataev, A. I. Smirnov, et al., “Microstructure and fracture behavior of flash butt welds between dissimilar steels,” Sci. Technol. Weld. Join., 20(2), 138 – 144 (2015).CrossRefGoogle Scholar
  5. 5.
    M.-H. Guo, M.-H. Zhao, and W.-G. Dong, “Welding of high manganese steel to high carbon steel,” Trans. China Weld. Inst., 23, 6 – 10 (2002).Google Scholar
  6. 6.
    R. Paventhan, P. R. Lakshminarayanan, and V. Balasubramanian, “Fatigue behavior of friction welded medium carbon steel and austenitic stainless steel dissimilar joints,” Mater. Design, 32, 1888 – 1894 (2011).CrossRefGoogle Scholar
  7. 7.
    H. Ma, G. Qin, P. Geng, et al., “Microstructure characterization and properties of carbon steel to stainless steel dissimilar metal joint made by friction welding,” Mater. Design., 86, 587 – 597 (2015).CrossRefGoogle Scholar
  8. 8.
    E. A. Lozhkin, I. A. Bataev, V. I. Mali, et al., “Structure and fatigue crack resistance of multilayer steel 20 – steel 12Kh18N10T composite obtained by explosion welding,” Deform. Razrush. Mater., No. 3, 28 – 34 (2013).Google Scholar
  9. 9.
    R. Kacar and M. Acarer, “An investigation on the explosive cladding of 316L stainless steel-din-P355GH steel,” J. Mater. Proc. Technol., 152, 91 – 96 (2004).CrossRefGoogle Scholar
  10. 10.
    T. Abe and H. Sasahara, “Dissimilar metal deposition with a stainless steel and nickel-based alloy using wire and arc-based additive manufacturing,” Precision Eng., 45, 387 – 295 (2016).CrossRefGoogle Scholar
  11. 11.
    A. Ninojos, J. Mireles, A. Reichardt, et al., “Joining of Inconel 718 and 316 stainless steel using electron beam melting additive manufacturing technology,” Mater. Design, 94, 17 – 27 (2016).CrossRefGoogle Scholar
  12. 12.
    Z. H. Liu, D. Q. Zhang, S. L. Sing, and C. K. Chu, “Interfacial characterization of SLM part in multi material processing: metallurgical diffusion between 316L stainless steel and C18400 copper alloy,” Mater. Charact., 94, 116 – 125 (2014).CrossRefGoogle Scholar
  13. 13.
    Z. A. Munir and U. Anseli-Tamburini, “The effect of electric field and pressure on the synthesis and consolidation of materials: A review of the spark plasma sintering method,” J. Mater. Sci., 41, 763 – 777 (2006).CrossRefGoogle Scholar
  14. 14.
    C. Menapace, I. Lonardelli, M. Tait, and A. Molinari, “Nanostructured /ultrafine multiphase steel with enhanced ductility obtained by mechanical alloying and spark plasma sintering of powders,” Mater. Sci. Eng. A, 517, 1 – 7 (2009).CrossRefGoogle Scholar
  15. 15.
    Zh. Hu, K. Ning, and K. Lu, “Study of spark plasma sintered nanostructured ferritic steel alloy with silicon carbide addition,” Mater. Sci. Eng. A, 670, 75 – 80 (2016).CrossRefGoogle Scholar
  16. 16.
    G. Marnier, C. Keller, J. Noudem, and E. Hug, “Functional properties of a spark plasma sintered ultrafine-grained 316L steel,” Mater. Design, 63, 633 – 640 (2014).CrossRefGoogle Scholar
  17. 17.
    V. S. Kovalenko, Metallographic Reagents [in Russian], Metallurgiya, Moscow (1981), 120 p.Google Scholar
  18. 18.
    I. N. Bekman, The Mathematical Apparatus of Diffusion [in Russian], Izd. MGU, Moscow (1990), 375 p.Google Scholar
  19. 19.
    GOST 1434–99. Bars, Strips and Coils from Plain Tool Steel [in Russian], Izd. Standartov, Moscow (2000), 21 p.Google Scholar
  20. 20.
    GOST 5632–72. High-Alloy Steels and Corrosion-Resistant, Heat-Resistant and Refractory Alloys [in Russian], Izd. Standartov, Moscow (1993), 64 p.Google Scholar
  21. 21.
    J. Crank, The Mathematics of Diffusion, Oxford University Press, London (1975), 421 p.Google Scholar
  22. 22.
    Diffusion Constants’ Database // URL: http://diffusion.nims.go.jp/en/ (date of access 10.05.2017).
  23. 23.
    V. A. Litvak and N. P. Belokopytov, “High-nickel corrosion-resistant steels,” URL: https://zaobns.ru/articles/58/ (date of access 10.05.2017).
  24. 24.
    A. A. Nikulina, “Formation of inhomogeneous structure in iron-carbon alloys by sintering particles of dissimilar steels,” Obrab. Met. (Tekhnol., Oborud., Instr.), No. 3(72), 52 – 61 (2016).Google Scholar
  25. 25.
    V. S. Timofeev and E. A. Khailenko, “Adaptive evaluation of parameters of regression models using a generalized lambdadistribution,” Dolk. Akad Nauk Vyssh. Shkoly RF, Novosibirsk, No. 2(15), 25 – 36 (2010).Google Scholar
  26. 26.
    P. J. Rousseeuw and K. van Driessen, “Computing LTS regression for large data sets,” Data Mining Knowl. Discov., 12, 29 – 45 (2006).CrossRefGoogle Scholar
  27. 27.
    S. R. Searle, Linear Models, Wiley, New York (1971), 532 p.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • A. A. Nikulina
    • 1
    Email author
  • V. S. Timofeev
    • 1
  • I. N. Gradusov
    • 1
  • A. S. Ivashutenko
    • 2
  1. 1.Novosibirsk State Technical UniversityNovosibirskRussia
  2. 2.National Research Tomsk Polytechnic UniversityTomskRussia

Personalised recommendations