Advertisement

Metal Science and Heat Treatment

, Volume 60, Issue 9–10, pp 659–665 | Cite as

Structure and Phase Composition of Biomedical Alloys of the Ti – Nb System in Cast Condition and After Heat Treatment

  • A. ThoemmesEmail author
  • I. V. Ivanov
  • A. A. Ruktuev
  • D. V. Lazurenko
  • I. A. Bataev
Article
  • 25 Downloads

The effect of additions of niobium in an amount of from 20 to 35 wt.% on the structure and properties of two-component Ti – Nb alloys is studied in cast condition and after a homogenizing annealing. The structure of the alloys is determined by optical and scanning electron microscopy, x-ray spectrum analysis and diffraction of synchrotron radiation. The lattice parameters of the formed phases and the mechanical properties of the alloys are assessed.

Key words

Ti – Nb alloys biomaterials synchrotron radiation metastable phases omega-phase microhardness 

Notes

The work has been performed with financial support of the Novosibirsk State Technical University (Project No. S-3.2018) using the equipment of Collective Use Center (TsKP SSM) of the Novosibirsk State Technical University.

References

  1. 1.
    M. Niinomi, “Recent metallic materials for biomedical applications,” Metall. Mater. Trans. A, 33(3), 477 – 486 (2002), doi:  https://doi.org/10.1007/s11661-002-0109-2.CrossRefGoogle Scholar
  2. 2.
    M. B. Nasab, M. R. Hassan, and B. B. Sahari, “Metallic biomaterials of knee and Hip – A review,” Trends Biomater. Artif. Org., 24(1), 69 – 82 (2010).Google Scholar
  3. 3.
    M. Niinomi, “Metallic biomaterials,” J. Artif. Org., 11(3), 105 – 110 (2008), doi:  https://doi.org/10.1007/s10047-008-0422-7.CrossRefGoogle Scholar
  4. 4.
    M. Sumita, T. Hanawa, and S. H. Teoh, “Development of nitrogen-containing nickel-free austenitic stainless steels for metallic biomaterials – review,” Mater. Sci. Eng. C, 24(6 – 8), 753 – 760 (2004), doi:  https://doi.org/10.1016/j.msec.2004.08.030.
  5. 5.
    M. Geetha, A. K. Singh, R. Asokamani, and A. K. Gogia, “Ti based biomaterials, the ultimate choice for orthopaedic implants – A review,” Progr. Mater. Sci., 54(3), 397 – 425 (2009), doi:  https://doi.org/10.1016/j.pmatsci.2008.06.004.CrossRefGoogle Scholar
  6. 6.
    M. Niinomi and M. Nakai, “Titanium-based biomaterials for preventing stress shielding between implant devices and bone,” Int. J. Biomater., 2011, 836587 (2011), doi:  https://doi.org/10.1155/2011/836587.
  7. 7.
    C. N. Elias, J. H. C. Lima, R. Valiev, and M. A. Meyers, “Biomedical applications of titanium and its alloys,” JOM, 60(3), 46 – 49 (2008), doi:  https://doi.org/10.1007/s11837-008-0031-1.CrossRefGoogle Scholar
  8. 8.
    M. Abdel-Hady, “Texturing tendency in β-type Ti-alloys” in: P. Wilson (ed.), Recent Developments in the Study of Recrystallization (2012), p. 232.Google Scholar
  9. 9.
    M. Niinomi, “Mechanical properties of biomedical titanium alloys,” Mater. Sci. Eng. A, 243(1 – 2), 231 – 236 (1998), doi:  https://doi.org/10.1016/S0921-5093(97)00806-X.
  10. 10.
    M. Niinomi, “Mechanical biocompatibilities of titanium alloys for biomedical applications,” J. Mech. Behavior Biomed. Mater., 1(1), 30 – 42 (2008), doi:  https://doi.org/10.1016/j.jmbbm.2007.07.001.CrossRefGoogle Scholar
  11. 11.
    Z. G. Kovalevskaya, Y. P. Sharkeev, M. A. Korchagin, et al., “Investigation of the structure of Ti – 40Nb powder alloy obtained by mechanical activation,” Metal Working Mater. Sci., 73(4), 34 – 42 (2016), doi:  https://doi.org/10.17212/1994-6309-2016-4-34-42. CrossRefGoogle Scholar
  12. 12.
    A. Thoemmes, I. A. Bataev, N. S. Belousova, and D. V. Lazurenko, “Microstructure and mechanical properties of binary Ti – Nb alloys for application in medicine,” in: 11th Int. Forum on Strategic Technology (IFOST), June 1 – 3, 2016, Novosibirsk, Russia (2016), pp. 26 – 29, doi: 10.1109/IFOST.2016.7884101.Google Scholar
  13. 13.
    D. P. Perl, “Relationship of aluminum to Alzheimer’s disease,” Envir. Health Persp., 63, 149 – 153 (1985), doi:  https://doi.org/10.1289/ehp.8563149.CrossRefGoogle Scholar
  14. 14.
    A. Cremasco, A. D. Messias, A. R. Esposito, et al., “Effects of alloying elements on the cytotoxic response of titanium alloys,” Mater. Sci. Eng. A, 31(5), 833 – 839 (2011), doi:  https://doi.org/10.1016/j.msec.2010.12.013.CrossRefGoogle Scholar
  15. 15.
    J. L. Murray, “The Nb – Ti (niobium-tantalum) system,” Bull. Alloy Phase Diagr., 2(1), 55 – 61 (1981), doi:  https://doi.org/10.1007/BF02873704. CrossRefGoogle Scholar
  16. 16.
    D. L. Moffat, Phase Transformations in the Titanium-Niobium Binary Alloy System, Author’s Abstract of Doctoral’s Thesis, Univ. of Wisconsin, Madison (USA) (1985), 238 p.Google Scholar
  17. 17.
    M. Bönisch, Structural Properties, Deformation Behavior and Thermal Stability of Martensitic Ti – Nb Alloys, Author’s Abstract of Doctoral’s Thesis, Werner Skrotzki Technische Univers., Dresden (2014), 160 p.Google Scholar
  18. 18.
    H. Y. Kim, Y. Ikehara, J. I. Kim, et al., “Martensitic transformations, shape memory effect and superplasticity of Ti – Nb binary alloys,” Acta Mater., 54(9), 2419 – 2429 (2006), doi:  https://doi.org/10.1016/j.actamat.2006.01.019.CrossRefGoogle Scholar
  19. 19.
    D. L. Moffat and U. R. Kattner, “The stable and metastable Ti – Ni phase diagrams,” Metall. Trans. A, 19(10), 2389 – 2397 (1988), doi:  https://doi.org/10.1007/BF02645466.CrossRefGoogle Scholar
  20. 20.
    Y. Zhang, H. Liu, and Z. Jin, “Thermodynamic assessment of the Nb – Ti system,” Calphad, 25(2), 305 – 317 (2001), doi:  https://doi.org/10.1016/S0364-5916(01)00051-7.CrossRefGoogle Scholar
  21. 21.
    A. V. Dobromyslov and V. A. Elkin, “The orthorhombic α″-phase in binary titanium-base alloys with d-metals of V – VIII groups,” Mater. Sci. Eng. A, 438 – 440, 324 – 326 (2006), doi: 10.1016/j.msea.2006.02.086.Google Scholar
  22. 22.
    M. Bönisch, M. Calin, L. Giebeler, et al., “Composition-dependent magnitude of atomic shuffles in Ti – Nb martensites,” J. Appl. Crystallogr., 47(4), 1374 – 1379 (2014), doi:  https://doi.org/10.1107/S1600576714012576.CrossRefGoogle Scholar
  23. 23.
    Y. Mantani and K. Kudou, “Effect of plastic deformation on material properties and martensite structures in Ti – Nb alloys,” J. Alloys Compd., 577, S448 – S452 (2013), doi:  https://doi.org/10.1016/j.jallcom.2012.04.054. CrossRefGoogle Scholar
  24. 24.
    Yu. A. Bagariatskii, G. I. Nosova, and T. V. Tagunova, “Factors in the formation of metastable phases in titanium-base alloys,” Soviet Physics: Doklady, English Translation, Issue 3, 1014 – 1018 (1958).Google Scholar
  25. 25.
    K. S. Jepson, A. R. G. Brown, and J. A. Gray, “The effect of cooling rate on the beta transformation in titanium-niobium and titanium-aluminum alloys,” in: The Science, Technology, and Application of Titanium, Proc. Int. Conf. (1970), pp. 677 – 690, doi: 10.1016_B978-0-08-006564-9.50074-9.Google Scholar
  26. 26.
    J. P. Morniroli and M. Gantois, “Investigation of the conditions for omega phase formation in Ti – Nb and Ti – Mo alloys,” Mémoires et Études Scientifiques de la Revue de Métallurgie, 70, 831 – 842 (1973).Google Scholar
  27. 27.
    M. Bonisch, A. Panigrahi, M. Stoica, et al., “Giant thermal expansion and α-precipitation pathways in Ti-alloys,” Nature Commun., 8(1), 1429 (2017), doi:  https://doi.org/10.1038/s41467-017-01578-1. CrossRefGoogle Scholar
  28. 28.
    A. V. Dobromyslov and V. A. Elkin, “Martensitic transformation and metastable β-phase in binary titanium alloys with d-metals of 4 – 6 periods,” Scr. Mater., 44(6), 905 – 910 (2001), doi:  https://doi.org/10.1016/S1359-6462(00)00694-1.CrossRefGoogle Scholar
  29. 29.
    N. V. D’yakonova, I. V. Lyasotskii and Y. L. Rodionov, “Orthorhombic martensite and the ω phase in quenched and deformed titanium alloys with 20 – 24 at.% Nb,” Russian Metallurgy (Metally), 2007(1), 51 – 58 (2007), doi:  https://doi.org/10.1134/S0036029507010107.
  30. 30.
    E. Rudy, Compilation of Phase Diagram Data (1969).Google Scholar
  31. 31.
    S. Cai, J. E. Schaffer, and Y. Ren, “Deformation of a Ti – Nb alloy containing α″-martensite and omega phases,” Appl. Phys. Lett., 106(13), 131907 (2015), Iss. 13. P. 131907, doi:  https://doi.org/10.1063/1.4916960.
  32. 32.
    J. Sun, Q. Yao, H. Xing, andW. Y. Gio, “Elastic properties of β, α″, and ω metastable phases in Ti – Nb alloy from first-principles,” J. Phys., Condensed Matter, 19(48), 486215 (2007), doi:  https://doi.org/10.1088/0953-8984/19/48/486215.CrossRefGoogle Scholar
  33. 33.
    L. Ming, M. H. Manghnani, and K. W. Katahara, “Phase transformations in the Ti – V system under high pressure up to 25 GPa,” Acta Metall., 29(3), 479 – 485 (1981), doi:  https://doi.org/10.1016/0001-6160(81)90071-7.CrossRefGoogle Scholar
  34. 34.
    Y.W. Chai, H. Y. Kim, H. Hosoda, and S. Miyazaki, “Interfacial defects in Ti – Nb shape memory alloys,” Acta Mater., 56(13), 3088 – 3097 (2008), doi:  https://doi.org/10.1016/j.actamat.2008.02.045.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • A. Thoemmes
    • 1
    Email author
  • I. V. Ivanov
    • 1
  • A. A. Ruktuev
    • 1
  • D. V. Lazurenko
    • 1
  • I. A. Bataev
    • 1
  1. 1.Novosibirsk State Technical UniversityNovosibirskRussia

Personalised recommendations