Advertisement

Metal Science and Heat Treatment

, Volume 60, Issue 7–8, pp 539–543 | Cite as

Effect of Bulk Nitriding on Magnetic Properties of Iron

  • I. O. Minkova
  • V. P. Menushenkov
  • E. S. Savchenko
  • M. V. Zheleznyi
Article
  • 6 Downloads

Results of a study of nitriding of iron with the use of boron, aluminum and silicon nitrides are presented. It is shown that the method suggested, which involves mixing of Fe powders with BN, AlN and Si3 N4, pressing of the briquette, heating in a nitrogen atmosphere to 1550°C, 3-h holding, and cooling with the furnace, gives specimens consisting of two parts, i.e., ceramic and metallic ones. The structure of the metallic part is represented by primary precipitates of iron and eutectic colonies of type Fe – Fe2 B in which a part of boron is substituted with nitrogen. The metallic specimens possess enhanced hardness and relatively high coercivity comparable to that of nitrided thin films and nanosize powders.

Key words

boron aluminum and silicon nitrides eutectic structure coercivity hardness 

References

  1. 1.
    J. P. Wang, Y. Jiang, Md. A. Mehedi, and J. M. Liu, “Bulk Fe16N2 compound permanent magnet with 20 MGOe magnetic energy product and beyond magnet,” in: Rare-Earth and Future Permanent Magnets and Their Application, pp. 234 – 240.Google Scholar
  2. 2.
    S. Kikkawa, K. Kubota, and T. Takeda, “Particle size dependence in low temperature nitridation reaction for Fe16N2,” J. Alloys Compd., 449(1 – 2), 7 – 10 (2008).CrossRefGoogle Scholar
  3. 3.
    T. Ogi, Q. Li, and S. Horie, “High purity core-shell α″-Fe16N2 /Al2O3 nanoparticles synthesized from α-hematite for rare-earth-free magnet applications,” Adv. Power Technol., 27(6), 2520 – 2525 (2016).CrossRefGoogle Scholar
  4. 4.
    R. Zulhujiah, K. Yoshimi, A. B. D. Nandiyanto, et al., “Advanced power technology α″-Fe16N2 phase formation of plasma-synthesized core-shell nanoparticles under various conditions,” Adv. Power Technol., 25(2), 582 – 590 (2014).CrossRefGoogle Scholar
  5. 5.
    L. A. Chebotkevich, Yu. D. Vorob’ev, and I. V. Pisarenko, “Magnetic properties of iron nitride films obtained by reactive magnetron sputtering,” Fiz. Tverd. Tela, 40(4), 706 – 707 (1998).Google Scholar
  6. 6.
    I. M. Shatokhin, A. E. Bukreev, M. Kh. Ziatdinov, and B. A. Nikiforov, A Method for Alloying Steels with Nitrogen, Patent 2394107 RF, MPK C21C 7_00 [in Russian], appl. 13.04.2009, publ. 20.02.2010.Google Scholar
  7. 7.
    I. L. Knunyants (ed.), Chemical Encyclopedia [in Russian], Sovetskaya Entsiklopediya, Moscow, Vol. 2, 671 p. (1990); Vol. 3, 639 p. (1992).Google Scholar
  8. 8.
    E. V. Shelekhov and T. A. Sviridova, “Programs for x-ray analysis of polycrystals,” Metalloved. Term. Obrab. Met., No. 8, 16 – 19 (2000).Google Scholar
  9. 9.
    Software FACT-Win/F*A*C*T and ChemSage, http://www.crct.polymtl.ca/fact/documentation.
  10. 10.
    Th. De Donder and P. Van Rysselberghe, Thermodynamic Theory of Affinity. A Book of Principles [Russian translation], Metallurgiya, Moscow (1984), 134 p.Google Scholar
  11. 11.
    I. Prigogine and R. Defay, Chemical Thermodynamics [in Russian], Nauka, Novosibirsk (1966), 503 p.Google Scholar
  12. 12.
    Yu. N. Taran and V. I. Mazur, Structure of Eutectic Alloys [in Russian], Metallurgiya, Moscow (1978), 312 p.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • I. O. Minkova
    • 1
  • V. P. Menushenkov
    • 1
  • E. S. Savchenko
    • 1
  • M. V. Zheleznyi
    • 1
  1. 1.National Research Technological University “MISiS”MoscowRussia

Personalised recommendations