Advertisement

Metal Science and Heat Treatment

, Volume 60, Issue 7–8, pp 522–527 | Cite as

Magnetic and Thermomagnetic Properties of Materials Based on R(Co1 – xFex )2 Laves Phases with Heavy Rare-Earth Metals

  • M. S. Anikin
  • E. N. Tarasov
  • N. V. Kudrevatykh
  • A. A. Inishev
  • A. V. Zinin
Article
  • 19 Downloads

The crystal structure, the temperature and field dependences of the magnetization M and of the magnetic contribution into the entropy ΔSm, the temperature dependences of the high-field susceptibility χ and the heat capacity Cp of specimens of polycrystal R(Co1 – x Fex)2 compounds, where R is Gd, Dy, Ho or Er, are studied. The width of the ΔSm peak at half-height of its maximum (ΔTFWHM) is estimated. The dependences of ΔTFWHM and of the temperature behavior of ΔSm of the specimens on the magnetic field, on the iron content (x ) and on the atomic number of the element R are determined. The causes of the broadening of the ΔSm (T ) peak upon substitution of cobalt with iron in the R(Co1 – x Fex)2 compounds are considered.

Key words

magnetocaloric effect Laves phases heat capacity susceptibility variation of the magnetic contribution into entropy 

Notes

The authors are obliged to N. V. Selezneva for the help with the x-ray diffraction analysis, to A. S. Volegov for the help with the magnetic measurements, and to M. A. Semkin for the help with processing the diffraction patterns.

The work has been performed with support of State Contract No. 3.6121.2017/8.9 concluded between the Ural Federal University and the Ministry of Education and Science of the Russian Federation.

References

  1. 1.
    K. A. Gschneidner Jr., V. K. Pecharsky, and A. O. Tsokol, “Recent developments in magnetocaloric materials,” Rep. Prog. Phys., 68, 1479 – 1539 (2005).CrossRefGoogle Scholar
  2. 2.
    V. Provenzano, A. J. Shapiro, and R. D. Shull, “Reduction of hysteresis losses in the magnetic refrigerant Gd5Ge2Si2 by the addition of iron,” Nature, 429, 853 (2004).CrossRefGoogle Scholar
  3. 3.
    S. Mican, D. Benea, and R. Tetean, “Magnetism and large magnetocaloric effect in HoFe2 – xAlx,” J. Alloys Compd., 549, 64 – 69 (2013).CrossRefGoogle Scholar
  4. 4.
    N. K. Singh, S. Agarwal, K. G. Suresh, et al., “Anomalous magnetocaloric effect and magnetoresistance in Ho(Ni, Fe)2 compounds,” Phys. Rev. B: Condens. Matter, 72, 014452 (2005).CrossRefGoogle Scholar
  5. 5.
    M. Halder, S. M. Yusuf, M. D. Mukadam, and K. Shashikala, “Magnetocaloric effect and critical behavior near the paramagnetic to ferromagnetic phase transition temperature in TbCo2 – xFex,” Phys. Rev. B: Condens. Matter, 81, 174402 (2010).CrossRefGoogle Scholar
  6. 6.
    N. K. Singh, K. G. Suresh, D. S. Rana, et al., “Role of Fe substitution on the anomalous magnetocaloric and magnetoresistance behavior in Nb(Ni1 – xFex)2 compounds,” J. Phys. Condens. Matter, 18, 10775 (2006).CrossRefGoogle Scholar
  7. 7.
    M. S. Anikin, E. N. Tarasov, N. V. Kudrevatykh, et al., “Features of magnetic and thermal properties of R(Co1 – xFex)2 (x ≤ 0.16) quasibinary compounds with R = Dy, Ho, Er,” J. Magn. Magn. Mater., 418, 181 – 187 (2016).CrossRefGoogle Scholar
  8. 8.
    M. S. Anikin, E. N. Tarasov, N. V. Kudrevatykh, et al., “Features of magnetocaloric effect in rare-earth based R(Co-Fe)2 Laves phases with R = Ho, Er,” Refr. Sci., 236 – 239 (2016).Google Scholar
  9. 9.
    K. P. Belov, “Ferromagnets with “weak” magnetic sublattice,” Usp. Fiz. Nauk, 16, 669 – 681 (1996).CrossRefGoogle Scholar
  10. 10.
    A. E. Baranovskiy, G. E. Grechnev, I. V. Svechkarev, and O. Eriksson, “Electronic structure and magnetic properties of GdM2 compounds,” J. Magn. Magn. Mater., 258 – 259, 520 – 522 (2003).CrossRefGoogle Scholar
  11. 11.
    J. Rodriguez-Corvajal, “Recent advances in magnetic structure determination by neutron powder diffraction FullProf,” Physica B, 192, 55 – 69 (1993).CrossRefGoogle Scholar
  12. 12.
    D. Gignoux, F. Givord, and R. Lemaire, “Magnetic properties in single crystals of GdCo2, HoNi2, and HoCo2,” Phys. Rev. B: Condens. Matter, 12, 3878 – 3884 (1975).CrossRefGoogle Scholar
  13. 13.
    A. V. Andreev, A. V. Deryagin, M. S. Zadvorkin, et al., “Effect of 3d-metal on magnetic properties of quasibinary rare-earth Er(Fe1 – xCox)2 intermetallics,” Fiz. Met. Metalloved., 59, 481 – 488 (1985).Google Scholar
  14. 14.
    E. Burzo, I. G. Pop, and D. N. Kozlenko, “Magnetic and magnetocaloric properties of some ferrimagnetic compounds,” J. Optoelectron. Adv. Mater., 12, 1105 – 1113 (2010).Google Scholar
  15. 15.
    F. Pourarian, W. E. Wallace, and S. K. Malik, “Magnetic behavior of Laves phase RCo2-xFex (R = Ho, Er) compounds and their hydrides,” J. Magn. Magn. Mater., 25, 299 – 306 (1982).CrossRefGoogle Scholar
  16. 16.
    J. J. Rhyne, G. E. Fish, S. G. Sankar, and W. E. Wallace, “Metallic hydrides. Magnetic properties of Laves-phase rare earth hydrides,” J. Phys. Colloq. C5, 40, C5-209 – C5-210 (1979).Google Scholar
  17. 17.
    G. E. Fish, J. J. Rhyne, S. G. Sankar, and W. E. Wallace, “Effect of hydrogen on sublattice magnetization of Laves-phase rare earth iron compounds,” J. Appl. Phys., 50, 2003 (1979).CrossRefGoogle Scholar
  18. 18.
    P. J. Viccaro, J. M. Freidt, D. Niarchos, et al., “Magnetic properties of DyFe2H2 from 57Fe, 161Dy Mössbauer effect and magnetization measurements,” J. Appl. Phys., 50, 2051 (1979).CrossRefGoogle Scholar
  19. 19.
    K. A. Gschneidner Jr. and V. K. Pecharsky, “Magnetocaloric materials,” Ann. Rev. Mater. Sci., 30, 387 – 429 (2000).CrossRefGoogle Scholar
  20. 20.
    J. P. Liu, F. R. DeBoer, and K. H. J. Buschow, “Magnetic coupling in rare-earth compounds RFe3 and RFe3,” J. Magn. Magn. Mater., 98, 291 – 297 (1991).CrossRefGoogle Scholar
  21. 21.
    E. Belorizky, M. E. Fremy, J. P. Gavigan, et al., “Evidence in rare-earth-transition metal intermetallics for a systematic dependence of R-M exchange interaction on the nature of the R atom,” J. Appl. Phys., 61, 3971 – 3973 (1987).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • M. S. Anikin
    • 1
  • E. N. Tarasov
    • 1
  • N. V. Kudrevatykh
    • 1
  • A. A. Inishev
    • 1
    • 2
  • A. V. Zinin
    • 1
  1. 1.Ural Federal UniversityEkaterinburgRussia
  2. 2.Institute for Metals PhysicsEkaterinburgRussia

Personalised recommendations