Advertisement

Metal Science and Heat Treatment

, Volume 60, Issue 7–8, pp 489–493 | Cite as

Reversible Changes of Coercive Force in Sm – Co – Cu – Fe – Zr Alloy for Permanent Magnets Under Cyclic Heat Treatment

  • A. S. Lileev
  • V. V. Pinkas
  • K. V. Voronchikhina
  • A. V. Gunbin
XXI INTERNATIONAL CONFERENCE OF PERMANENT MAGNETS
  • 2 Downloads

Causes of reversible changes in the coercivity of alloys for permanent magnets as a result of cyclic heat treatment are analyzed. The magnetic properties and the metallographic and magnetic domain structures of alloy Sm(Co0.65Fe0.26Cu0.07Zr0.02)7 are studied as a function of the temperature of interruption of the process cooling. The own results and data of foreign authors are used for developing a scheme of the processes occurring in the alloy in order to explain the mechanism of the “damage – restoration” phenomenon in alloys of the Sm – Co – Cu – Fe – Zr system of type Sm(Co0.65Fe0.26Cu0.07Zr0.02)7.

Key words

permanent magnets heat treatment phase composition heat treatment temperature magnetic properties coercivity “damage,” “restoration” 

References

  1. 1.
    A. S. Lileev, V. V. Pinkas, K. V. Voronchihina, and A. V. Gunbin, “Research of reversibility of coercivity under heat treatment in permanent magnets,” in: Moscow International Symposium on Magnetism (MISM), 1 – 5 July, 2017, Moscow, Book of Abstracts, p. 826.Google Scholar
  2. 2.
    A. S. Lileev, V. P. Menushenkov, and V. I. Sumin, “Investigation of reversible changes of magnetic properties in alloy YuNDK35T5 after a “damage – restoration” heat treatment,” Fiz. Met. Metalloved., 36(1), 183 – 186 (1973).Google Scholar
  3. 3.
    B. G. Livshits, A. S. Lileev, and V. P. Menushenkov, “Reversibility of magnetic properties of sintered permanent magnets from SmCo5 compound,” Metally, No. 4, 161 – 164 (1976).Google Scholar
  4. 4.
    T. G.Woodcock, F. Bittner, T. Mix, et al., “On the reversible and fully repeatable increase in coercive field of sintered Nd – Fe – B magnets following post sinter annealing,” J. Magn. Magn. Mater., 360, 154 – 157 (2014).Google Scholar
  5. 5.
    X. Y. Xiong, T. Ohkubo, T. Koyama, et al., “The microstructure of sintered Sm(Co0.72Fe0.20Cu0.055Zr0.025)7.5 permanent magnet studied by atom probe,” Acta Mater., 52, 737 – 748 (2004).Google Scholar
  6. 6.
    O. A. Arinicheva, A. S. Lileev, M. Raizner, et al., “Effect of cyclic heat treatment in the range of 800 – 400°C on the properties of sintered magnets based on alloy Sm(Co, Fe, Cu, Zr)z,” Metalloved. Term. Obrab. Met., No. 11, 16 – 20 (2014).Google Scholar
  7. 7.
    O. Gutfleisch, K.-H Muller, K. Khlopkov, et al., “Evolution of magnetic domain structures and coercivity in high-performance SmCo 2:17-type permanent magnets,” Acta Mater., 54, 997 – 1008 (2006).Google Scholar
  8. 8.
    R. Gopalan, K. Hono, A. Yan, and O. Gutfleisch, “Direct evidence for Cu concentration and its correlation to coercivity in Sm(Co0.74Fe0.1Cu0.12Zr0.4)7.4 ribbons,” Scr. Mater., 60, 764 – 767 (2009).Google Scholar
  9. 9.
    H. Sepehri-Amin, J. Thielsch, J. Fischbacher et at., “Correlation of microchemistry of cell boundary phase and interface structure to the coercivity of Sm(Co0.784Fe0.100Cu0.088Zr0.028)7.19 sintered magnets,” Acta Mater., 126, 1 – 10 (2017).Google Scholar
  10. 10.
    C. Tikadzumi, The Physics of Ferromagnetism. Magnetic Characteristics and Applications [Russian translation], Mir, Moscow (1987), 420 p.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • A. S. Lileev
    • 1
  • V. V. Pinkas
    • 1
  • K. V. Voronchikhina
    • 2
  • A. V. Gunbin
    • 1
  1. 1.National Research Technological University “MISiS”MoscowRussia
  2. 2.“Spetsmagnit” CompanyMoscowRussia

Personalised recommendations