Metal Science and Heat Treatment

, Volume 60, Issue 7–8, pp 427–432 | Cite as

A Study of the Microstructure of Bainite in Steel 25G2S2N2MA by the Method of Atomic Force Microscopy

  • Yu. V. Yudin
  • M. V. MaisuradzeEmail author
  • A. A. Kuklina

The methods of optical, electron, and atomic force microscopy are used to study the morphology of bainite formed in high-strength structural steel 25G2S2N2MA (HY-TUF) under isothermal quenching. It is shown that the temperature of the transformation affects the substructure of the bainite, which is represented by ordered layers of plates with a width obeying a lognormal distribution law. It is shown that the bainite plates consist of nanosize subplates, the size of which is determined by the temperature of the bainitic transformation.

Key words

steel bainite morphology relief atomic force microscopy microstructure 


The work has been performed with financial support of the Government of the Russian Federation (Act No. 211, Contract No. 02.A03.21.0006) within a State Assignment of the Ministry of Education and Science of the RF (Project No. 11.1465.2014/K) and a Grant of the President of the Russian Federation for young scientists — candidates of science (MK-7929.2016.8).


  1. 1.
    E. S. Davenport and E. S. Bain, “Transformation of austenite at constant subcritical temperatures,” Trans. AIME, 90, 117 – 144 (1930).Google Scholar
  2. 2.
    G. V. Smith and R. F. Mehl, “Lattice relationships in decomposition of austenite to pearlite, bainite and martensite,” Trans. AIME, 150, 211 – 226 (1942).Google Scholar
  3. 3.
    H. K. D. H. Bhadeshia, Bainite in Steels. Transformations, Microstructure and Properties, IOM Communications Ltd., London (2001), 478 p.Google Scholar
  4. 4.
    I. Yu. Pyshmintsev, A. O. Sturin, A. M. Gervasyev et al, “Effect of bainite crystallographic texture on failure of pipe steel sheets made by controlled thermomechanical treatment,” Metallurgist, 60(3), 405 – 412 (2016).CrossRefGoogle Scholar
  5. 5.
    M. Hillert, “The nature of bainite,” ISIJ Int., 35(9), 1134 – 1140 (1995).CrossRefGoogle Scholar
  6. 6.
    L. C. D. Fielding, “The bainite controversy,” Mater. Sci. Technol., 29(4), 383 – 399 (2013).CrossRefGoogle Scholar
  7. 7.
    O. P. Morozov, V.M. Schastlivtsev, and I. L. Yakovleva, “Upper and lower bainite in a carbon eutectoid steel,” Phys. Met. Metallogr., 69(2), 146 – 155 (1990).Google Scholar
  8. 8.
    D. O. Panov, Yu. N. Simonov, P. A. Leont’ev et al, “Formation of structure and properties of carbide-free bainite in steel 30KhGSA,” Metal Sci. Heat Treat., 58(1), 71 – 75 (2016).CrossRefGoogle Scholar
  9. 9.
    M. Soliman and H. Palkowski, “Development of the low temperature bainite,” Arch. Civil Mechan. Eng., 16(3), 403 – 412 (2016).CrossRefGoogle Scholar
  10. 10.
    M. A. Smirnov, I. Yu. Pyshnintsev, and A. N. Boryakova, “Classification of low-carbon pipe steel microstructures,” Metallurgist, 54(7), 444 – 454 (2010).CrossRefGoogle Scholar
  11. 11.
    B. Guo, L. Fan, Q. Wang, et al., “The role of the bainite packet in control of impact toughness in a simulated CGHAZ of X90 pipeline steel,” Metals, 6(256), 1 – 3 (2016).Google Scholar
  12. 12.
    M. Schastlivtsev, T. I. Tabatchikova, I. L. Yakovleva et al, “Effect of austenite-decomposition temperature on bainite morphology and properties of low-carbon steel after thermomechanical treatment,” Phys. Met. Metallogr., 114, 419 – 429 (2013).CrossRefGoogle Scholar
  13. 13.
    J. S. Kang, J.-B. Seol, and C. G. Park, “Three-dimensional characterization of bainitic microstructures in low-carbon high-strength steel studied by electron backscatter diffraction,” Mater. Charact., 79, 110 – 112 (2013).CrossRefGoogle Scholar
  14. 14.
    R. Bakhtiari and A. Ekrami, “The effect of bainite morphology on the mechanical properties of a high bainite dual phase (HBDP) steel,” Mater. Sci. Eng. A, 525(1 – 2), 159 – 165 (2009).CrossRefGoogle Scholar
  15. 15.
    K. Abbaszadeh, H. Saghafian, and S. Kheirandish, “Effect of bainite morphology on mechanical properties of the mixed bainite-martensite microstructure in D6AC steel,” J. Mater. Sci. Technol., 28(4), 336 – 342 (2012).CrossRefGoogle Scholar
  16. 16.
    Y. Guo, K. Feng, F. Lu et al, “Effects of isothermal heat treatment on nanostructured bainite morphology and microstructures in laser cladded coating,” Appl. Surf. Sci., 357A, 309 – 316 (2015).CrossRefGoogle Scholar
  17. 17.
    E. Abbasi and W. M. Rainforth, “Microstructural evolution during bainite transformation in a vanadium microalloyed TRIP-assisted steel,” Mater. Sci. Eng. A, 651, 822 – 830 (2016).CrossRefGoogle Scholar
  18. 18.
    W. Gong, Y. Tomota, Y. Adachi et al, “Effects of ausforming temperature on bainite transformation, microstructure and variant selection in nanobainite steel,” Acta Mater., 61(11), 4142 – 4154 (2013).CrossRefGoogle Scholar
  19. 19.
    A. Yu. Kaletin and Yu. V. Kaletina, “Evolution of the structure and properties of silicon steels in the austenite-bainite phase transition,” Phys. Solid State, 57(1), 59 – 64 (2015).CrossRefGoogle Scholar
  20. 20.
    A. A. Zisman, S. N. Petrov, and A. V. Ptashnik, “Quantitative verification of high-strength alloyed steel bainite-martensite structures by scanning electron microscopy,” Metallurgist, 58(11), 1019 – 1024 (2015).CrossRefGoogle Scholar
  21. 21.
    G. Binnig, C. F. Quate, and Ch. Gerber, “Atomic force microscope,” Phys. Rev. Lett., 56(9), 930 – 933 (1986).CrossRefGoogle Scholar
  22. 22.
    M. Miles, “Probing the future,” Science, 277(5333), 1845 – 1847 (1997).CrossRefGoogle Scholar
  23. 23.
    E. Swallow and H. K. D. H. Bhadeshia, “High resolution observations of displacements caused by bainitic transformation,” Mater. Sci. Technol., 12(2), 121 – 125 (1996).CrossRefGoogle Scholar
  24. 24.
    T. Ros-Yanes, Y. Houbaert, and A. Mertens, “Characterization of TRIP-assisted multiphase steel surface technology by atomic force microscopy,” Mater. Charact., 47, 93 – 104 (2001).CrossRefGoogle Scholar
  25. 25.
    M. Dryja, A. Lis, and P. Wieczorek, “TRIP steel topography examined by AFM (atomic force microscopy),” Inzynier. Mater., No. 2, 106 – 108 (2014).Google Scholar
  26. 26.
    Z.-G. Yang, C. Zhang, B.-Z. Bai, and H.-S. Fang, “Observation of bainite surface reliefs in Fe – C alloy by atomic force microscopy,” Mater. Lett., 48, 292 – 298 (2001).CrossRefGoogle Scholar
  27. 27.
    M. J. Peet and H. K. D. H. Bhadeshia, “Surface relief due to bainite transformation at 473 K (200°C),” Metall. Mater. Trans. A, 42, 3344 – 3348 (2011).CrossRefGoogle Scholar
  28. 28.
    T. F. A. Santos, E. A. Torres, J. M. C. Vilela et al., “Caracterização Microestrutural De Aços Baixo Carbono Por Microscopia De Força Atômica,” Revista Latinoamericana de Metalurgia y Materiales, 35(1), 118 – 133 (2015).Google Scholar
  29. 29.
    S. Sharma, S. Sangal, and K. Mondal, “Development of new high-strength carbide-free bainitic steels,” Metall. Mater. Trans. A, 42, 3921 – 3933 (2011).CrossRefGoogle Scholar
  30. 30.
    L. D. Wang, M. Zhu, W. M. Zhou et al., “Refinement of sub-grain and enhancement of absorption for ultra-high strength bainite steel,” Mater. Sci. Forum, 539 – 543, 4562 – 4565 (2007).CrossRefGoogle Scholar
  31. 31.
    J. M. Oblak and R. F. Hehemann, Structure and Growth of Widmanstatten Ferrite and Bainite. Transformations and Hardenability of Steels, Ann Arbor, Michigan (1967), pp. 15 – 30.Google Scholar
  32. 32.
    L. C. Chang and H. K. D. H. Bhadeshia, “Microstructure of lower bainite formed at large undercoolings below bainite start temperature,” Mater. Sci. Technol., 12, 233 – 236 (1996).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Yu. V. Yudin
    • 1
  • M. V. Maisuradze
    • 1
    Email author
  • A. A. Kuklina
    • 1
  1. 1.Ural Federal University Named after the First President of Russia B. N. EltsynEkaterinburgRussia

Personalised recommendations